
Graphs in MySQL Page 468

Get It Done With MySQL 5&Up, Chapter 20. Copyright © Peter Brawley and Arthur Fuller 2018. All rights reserved.
TOC Previous Next

Trees and Other Hierarchies in MySQL
Graphs and SQL Edge list Edge-list model of a tree CTE edge list treewalk Draw the tree

Nested sets model of a tree Edge list model of a network Parts explosions

Most non-trivial data is hierarchical. Customers have orders, which have line items, which refer to products, which have
prices. Population samples have subjects, who take tests, which give results, which have sub-results and norms. Web sites
have pages, which have links, which collect hits across dates and times. These are hierarchies of tables. The number of
tables limits the number of JOINs needed to walk the tree. For such queries, conventional SQL is an excellent tool.

But when tables map a family tree, or a browsing history, or a bill of
materials, table rows relate hierarchically to other rows in the same table.
We no longer know how many JOINs we need to walk the tree. We need a
different data model.

That model is the graph (Fig 1), which is a set of nodes (vertices) and the
edges (lines or arcs) that connect them. This chapter is about how to model
and query graphs in a MySQL database.

Graph theory is a branch of topology, the study of geometric relations that
aren't changed by stretching and compression—rubber sheet geometry, some
call it. Graph theory is ideal for modelling hierarchies—like family trees,
browsing histories, search trees, Bayesian networks and bills of materials—
whose shape and size we can't know in advance.

Let the set of nodes in Fig 1 be N, the set of edges be L, and the graph be G. Then G is the tuple or ordered pair {N,L}:

Graphs in MySQL Page 469

 N = {A,B,C,D,E,F}
 L = {AC,CD,CF,BE}
 G = {N,L}
If the edges are directed, the graph is a digraph or directed graph. A mixed graph has both directed and undirected edges.

Examples of graphs are organisational charts; itineraries; route maps; parts explosions; massively multiplayer games;
language rules; chat histories; network and link analysis in a wide variety of fields, for example search engines, forensics,
epidemiology and telecommunications; data mining; models of chemical structure hierarchies; and biochemical
processes.

Graph characteristics and models

Nodes and edges : Two nodes are adjacent if there is an edge between them. Two edges are adjacent if they connect to a
common node. In a complete graph, all nodes are adjacent to all other nodes.

In a digraph, the number of edges entering a node is its indegree; the number leaving is its outdegree. A node of indegree
zero is a root node, a node of outdegree zero is a leaf node.

In a weighted graph, used for example to solve the travelling salesman problem, edges have a weight attribute. A digraph
with weighted edges is a network.

Paths and cycles: A connected sequence of edges is a path, its length the edge count. Two nodes are connected if there is
a path between them. If there is a path connecting every pair of nodes, the graph is a connected graph.

A path in which no node repeats is a simple path. A path that returns to its own origin without crossing itself is a cycle or
circuit. A graph with multiple paths between at least one pair of nodes is reconvergent. A reconvergent graph may be
cyclic or acyclic. A unit length cycle is a loop.

If a graph's edges intersect only at nodes, it is planar. Two paths having no node in common are independent.

http://pueblo.lbl.gov/~olken/graphdm/graphdm.htm#graphDataModel
http://pueblo.lbl.gov/~olken/graphdm/graphdm.htm#graphDataModel

Graphs in MySQL Page 470

Traversing graphs: There are two main approaches, breadth-first and depth-first. Breadth-first traversal visits all a
node's siblings before moving on to the next level, and typically uses a queue. Depth-first traversal follows edges down to
leaves and back before proceeding to siblings, and typically uses a stack.

Sparsity: A graph where the size of E approaches the maximum N2 is dense. When the multiple is much smaller than N,
the graph is considered sparse.

Trees: A tree is a connected graph with no cycles. It is also a graph where the indegree of the root node is 0, and the
indegree of every other node is 1. A tree where every node is of outdegree <=2 is a binary tree. A forest is a graph where
every connected component is a tree.

Euler paths: A path which traverses every edge in a graph exactly once is an Euler path. An Euler path which is a circuit
is an Euler circuit.

If and only if every node of a connected graph has even degree, it has an Euler circuit (which is why the good people of
Königsberg cannot go for a walk crossing each of their seven bridges exactly once). If and only if a connected graph has
exactly 2 nodes with odd degree, it has a non-circuit Euler path. The degree of an endpoint of a non-cycle Euler path is 1 +
twice the number of times the path passes through that node, so it is always odd.

Models for computing graphs

Traditionally, computer science textbooks have offered edge lists, adjacency lists and adjacency
matrices as data structures for graphs, with algorithms implemented in languages like C, C++ and
Java. More recently other models and tools have been suggested, including query languages
customised for graphs.

Edge list: The simplest way to represent a graph is to list its edges: for Fig 1, the edge list is
{AC,CD,CF,BE}. It is easy to add an edge to the list; deletion is a little harder.

Adjacency list: An adjacency list is a ragged array: for each node it lists all adjacent nodes. Formally, it represents a
directed graph of n nodes as a list of n lists where list i contains node j if the graph has an edge from node i to node j.

Table 20-1: An
Adjacency List

Nodes Adjacent
nodes

A C
B E
C F,D,A
D C
E B
F C

Graphs in MySQL Page 471

An undirected graph may be represented by having node j in the list for node i, and node i in the list for node j. Table 20-1
shows the adjacency list of the graph in Fig 1 interpreted as undirected.

Adjacency matrix: An adjacency matrix represents a graph with n nodes as an n x n matrix, where entry (i,j) is 1 node i
has an edge to node j, or zero if there is not. An adjacency matrix can represent a weighted graph using the weight as the
entry, and can represent an undirected graph by duplicating entries in (i,j) anf (j,i). or by using a triangular matrix.

There are useful glossaries here and here.

Graphs and SQL

Standard SQL has been cumbersome for the recursive row-to-row logic of graphs. To fix this, DB2, Oracle, SQL Server
and PostgreSQL have added recursive Common Table Expressions (CTEs). Until 8.0, MySQL hasn’t had CTEs, so recursive
graph logic required stored routines. MariaDB has had CTEs since version 10.2.2, MySQL since 8.0.2. Joe Celko and
Scott Stephens, among others, have published general SQL graph problem solutions that are simpler and smaller than
equivalent C++, C# or Java code. Here we show how to use such tools.

Beware that in ports of edge list methods to SQL, there has been name slippage. What SQLers often call an adjacency list
isn’t like the adjacency list shown in Table 1; it’s an edge list. Here we’ll honour that fact, and mostly call them edge lists,
but to keep the peace we’ll sometimes call them edge-adjacency lists.

Joe Celko calls his method nested sets. It’s an interval model, using greater-than/less-than arithmetic to encode tree
relationships and modified preorder tree traversal (MPTT) to query them. Tropashko's materialised path model stores
each node with its (denormalised) path to the root. So now we have five main ways to model graphs in MySQL:

• edge-adjacency lists: based on an adaptation by EF Codd of the logic of linked lists to table structures and queries,
• adjacency matrices,
• nested sets for trees simplify some queries, but tree updates are extremely inefficient,
• materialised paths,
• recursive CTEs.

http://en.wikipedia.org/wiki/Glossary_of_graph_theory
http://www.yworks.com/products/yfiles/doc/developers-guide/glossary.html
https://mariadb.com/kb/en/mariadb/common-table-expressions/

Graphs in MySQL Page 472

The edge list

The edge list is the simplest possible SQL representation of a graph: minimally, a single edges table where each row
specifies one node and its parent (which is NULL for the root node), or to avoid DKNF problems, two tables: one for the
nodes, the other for their edges.

In the real world, the nodes table might be a table of personnel, or assembly parts, or locations on a map. It might have
many other columms of data. The edges table might also have additional columns for edge properties. The key integers of
both tables might be BIGINTs. To model Fig 1, though, we keep things as simple as possible:
Listing 1
CREATE TABLE nodes(nodeID CHAR(1) PRIMARY KEY);
CREATE TABLE edges(
 childID CHAR(1) NOT NULL,
 parentID CHAR(1) NOT NULL,
 PRIMARY KEY(childID,parentID)
);
INSERT INTO nodes VALUES('A'), ('B'), ('C'), ('D'), ('E'), ('F');
INSERT INTO edges VALUES ('A','C'), ('C','D'), ('C','F'), ('B','E');
SELECT * FROM edges;
+---------+----------+
| childID | parentID |
+---------+----------+
A	C
B	E
C	D
C	F
+---------+----------+

Now, without any assumptions about whether the graph is connected, whether it is directed, whether it is a tree, or
whatever, how hard is it to write a reachability (“closure”) procedure, a procedure which tells us where we can get to from
here, wherever 'here' is? A simple approach is a breadth-first search:

1. Seed the list with the starting node,
2. Add, but do not duplicate, nodes which are children of nodes in the list,

Graphs in MySQL Page 473

3. Add, but do not duplicate, nodes which are parents of nodes in the list,
4. Repeat steps 2 and 3 until there are no more nodes to add.

Here it is as a MySQL stored procedure. It avoids duplicate nodes by defining reached.nodeID as a primary key and
adding reachable nodes with INSERT IGNORE:

Listing 2
DROP PROCEDURE IF EXISTS ListReached;
DELIMITER go
CREATE PROCEDURE ListReached(IN root CHAR(1))
BEGIN
 DECLARE rows SMALLINT DEFAULT 0;
 DROP TABLE IF EXISTS reached;
 CREATE TABLE reached (nodeID CHAR(1) PRIMARY KEY) ENGINE=HEAP;
 INSERT INTO reached VALUES (root);
 SET rows = ROW_COUNT();
 WHILE rows > 0 DO
 INSERT IGNORE INTO reached
 SELECT DISTINCT childID FROM edges AS e
 JOIN reached AS p ON e.parentID = p.nodeID;
 SET rows = ROW_COUNT();
 INSERT IGNORE INTO reached
 SELECT DISTINCT parentID FROM edges AS e
 JOIN reached AS p ON e.childID = p.nodeID;
 SET rows = rows + ROW_COUNT();
 END WHILE;
 SELECT Group_Concat(nodeID) FROM reached;
 DROP TABLE reached;
END;
go
DELIMITER ;
CALL ListReached('A'); -- returns A,B,C,D

To improve versatility, add input parameters to tell it whether to list child, parent or all connections, and whether to
recognise loops (for example C to C).

Graphs in MySQL Page 474

To give the model referential integrity, use InnoDB and make edges.childID and edges.parentID foreign keys. To
add or delete a node, add or delete desired single rows in nodes and edges. To change an edge, edit it. The model neither
requires the graph to be connected or treelike, nor presumes direction.

Edge list model of a tree

The SQL literature on graphs often gives solutions using single denormalised tables, but denormalisation can cost, big
time. The bigger the table, the bigger the cost. You cannot edit nodes and edges separately. Carrying extra node info
during edge computation slows performance.

To avoid such difficulties, normalise trees like William Shakespeare's family tree (Fig 2) into two tables, nodes (family)
with a row for each individual’s data, and edges (familytree) with a row for each parent-child link or edge.

Listing 3:
CREATE TABLE family(ID smallint unsigned PRIMARY KEY AUTO_INCREMENT, name char(20) default '',
 siborder tinyint default NULL, born smallint unsigned default NULL, died smallint unsignedefault NULL);
INSERT INTO family VALUES (1, 'Richard Shakespeare', NULL, NULL, 1561),
(2, 'Henry Shakespeare', 1, NULL, 1569),(3, 'John Shakespeare', 2, 1530, 1601),
(4, 'Joan Shakespeare', 1, 1558, NULL),(5, 'Margaret Shakespeare', 2, 1562, 1563),
(6, 'William Shakespeare', 3, 1564, 1616),(7, 'Gilbert Shakespeare', 4, 1566, 1612),
(8, 'Joan Shakespeare', 5, 1568, 1646),(9, 'Anne Shakespeare', 6, 1571, 1579),
(10, 'Richard Shakespeare', 7, 1574, 1613),(11, 'Edmond Shakespeare', 8, 1580, 1607),
(12, 'Susana Shakespeare', 1, 1583, 1649),(13, 'Hamnet Shakespeare', 1, 1585, 1596),
(14, 'Judith Shakespeare', 1, 1585, 1662),(15, 'William Hart', 1, 1600, 1639),
(16, 'Mary Hart', 2, 1603, 1607),(17, 'Thomas Hart', 3, 1605, 1670),
(18, 'Michael Hart', 1, 1608, 1618),(19, 'Elizabeth Hall', 1, 1608, 1670),
(20, 'Shakespeare Quiney', 1, 1616, 1617),(21, 'Richard Quiney', 2, 1618, 1639),
(22, 'Thomas Quiney', 3, 1620, 1639),(23, 'John Bernard', 1, NULL, 1674);
CREATE TABLE familytree(
 childID smallint unsigned NOT NULL,parentID smallint unsigned NULL,PRIMARY KEY(childID, parentID));
INSERT INTO familytree VALUES (2,1),(3,1),(4,2),(5,2),(6,2),(7,2),(8,2),(9,2),(10,2),(11,2),(12,6),(13,6),
 (14,6),(15,8),(16,8),(17,8),(18,8),(19,12),(20, 14),(21, 14),(22, 14),(23, 19);

Graphs in MySQL Page 475

Graphs in MySQL Page 476

A function to return family.name for a familytree childID or parentID:

Listing 4
DROP FUNCTION IF EXISTS PersonName;
CREATE FUNCTION PersonName(pid smallint) RETURNS VARCHAR(20) DETERMINISTIC
RETURN (SELECT name FROM family WHERE ID=pid);
SELECT PersonName(parentID) AS 'Parent of William' FROM familytree WHERE childID = 6;
+-------------------+
| Parent of William |
+-------------------+
| Henry Shakespeare |
+-------------------+
SELECT PersonName(childID) AS 'Children of William' FROM familytree
WHERE parentID = (SELECT ID FROM family WHERE name = 'William Shakespeare');
+---------------------+
| Children of William |
+---------------------+
| Susana Shakespeare |
| Hamnet Shakespeare |
| Judith Shakespeare |
+---------------------+
SELECT PersonName(childID) AS child, PersonName(parentID) AS parent FROM familytree;
+----------------------+---------------------+
| child | parent |
+----------------------+---------------------+
Henry Shakespeare	Richard Shakespeare
John Shakespeare	Richard Shakespeare
Joan Shakespeare	Henry Shakespeare
Margaret Shakespeare	Henry Shakespeare
William Shakespeare	Henry Shakespeare
Gilbert Shakespeare	Henry Shakespeare
Joan Shakespeare	Henry Shakespeare
Anne Shakespeare	Henry Shakespeare
Richard Shakespeare	Henry Shakespeare
Edmond Shakespeare	Henry Shakespeare
Susana Shakespeare	William Shakespeare
Hamnet Shakespeare	William Shakespeare
Judith Shakespeare	William Shakespeare

Graphs in MySQL Page 477

William Hart	Joan Shakespeare
Mary Hart	Joan Shakespeare
Thomas Hart	Joan Shakespeare
Michael Hart	Joan Shakespeare
Elizabeth Hall	Susana Shakespeare
Shakespeare Quiney	Judith Shakespeare
Richard Quiney	Judith Shakespeare
Thomas Quiney	Judith Shakespeare
John Bernard	Elizabeth Hall
+----------------------+---------------------+

A same-table foreign key can simplify tree maintenance:
Listing 4a:
create table edges (
 ID int PRIMARY KEY, parentid int,
 foreign key(parentID) references edges(ID) ON DELETE CASCADE ON UPDATE CASCADE
) engine=innodb;
insert into edges(ID,parentID) values (1,null),(2,1),(3,1),(4,2);
select * from edges;
+----+----------+
| ID | parentid |
+----+----------+
1	NULL
2	1
3	1
4	2
+----+----------+	
delete from edges where id=2;	
select * from edges;	
+----+----------+	
ID	parentid
+----+----------+	
1	NULL
3	1
+----+----------+

Simple queries retrieve basic facts about the tree, for example GROUP_CONCAT() collects parent nodes with their children:

Graphs in MySQL Page 478

Listing 5
SELECT parentID AS Father, GROUP_CONCAT(childID ORDER BY siborder) AS Children
FROM familytree t
JOIN family f ON t.parentID=f.ID
GROUP BY parentID;
+--------+-------------------+
| Father | Children |
+--------+-------------------+
1	3,2
2	4,5,6,7,8,9,10,11
6	12,13,14
8	18,17,16,15
12	19
14	22,21,20
19	23
+--------+-------------------+

Iterate over those child lists with a bit of application code and you have a hybrid treewalk. The paterfamilias is the root
node, childless individuals are leaf nodes, and queries to retrieve subtree statistics are straightforward:
Listing 6
SELECT PersonName(ID) AS Paterfamilias,IFNULL(born,'?') AS Born,IFNULL(died,'?') AS Died
FROM family AS f LEFT JOIN familytree AS t ON f.ID=t.childID
WHERE t.childID IS NULL;
+---------------------+------+------+
| Paterfamilias | Born | Died |
+---------------------+------+------+
| Richard Shakespeare | ? | 1561 |
+---------------------+------+------+
SELECT PersonName(ID) AS Childless,IFNULL(born,'?') AS Born,IFNULL(died,'?') AS Died
FROM family AS f
LEFT JOIN familytree AS t ON f.ID=t.parentID
WHERE t.parentID IS NULL;
+----------------------+------+------+
| Childless | Born | Died |
+----------------------+------+------+
| John Shakespeare | 1530 | 1601 |
| Joan Shakespeare | 1558 | ? |

Graphs in MySQL Page 479

Margaret Shakespeare	1562	1563
Gilbert Shakespeare	1566	1612
Anne Shakespeare	1571	1579
Richard Shakespeare	1574	1613
Edmond Shakespeare	1580	1607
Hamnet Shakespeare	1585	1596
William Hart	1600	1639
Mary Hart	1603	1607
Thomas Hart	1605	1670
Michael Hart	1608	1618
Shakespeare Quiney	1616	1617
Richard Quiney	1618	1639
Thomas Quiney	1620	1639
John Bernard	?	1674
+----------------------+------+------+

SELECT ROUND(AVG(died-born),2) AS 'Longevity of the childless'
FROM family AS f
LEFT JOIN familytree AS t ON f.ID=t.parentID
WHERE t.parentID IS NULL; -- returns 25.86

In striking contrast with Celko's nested sets model, inserting a new item in this model requires no revision of existing
rows. We just add a new family row, then a new familytree row with IDs specifying who is parent to whom. Deletion
is also a two-step: delete the familytree row for that child-parent link, then delete the family row for that child.

Walking an edge list tree or subtree

Edge list tree traversal is supposed to be difficult. Usually we don’t know how many levels must be traversed, so the query
needs recursion or a logically equivalent loop. Without CTEs (i.e., before MySQL 8.0.1 or MariaDB 10.2.2), that requires a
stored procedure. We start with a breadth-first algorithm, a simple one that just seeds a result table with children of the
root node, then adds remaining edges with INSERT IGNORE:
Listing 7
DELIMITER go
CREATE PROCEDURE famsubtree(root INT)
BEGIN
 DROP TABLE IF EXISTS famsubtree;

Graphs in MySQL Page 480

 CREATE TABLE famsubtree(childID smallint unsigned not null, parentID smallint unsigned null,
 Primary Key(childID,parentID))
 SELECT childID, parentID, 0 AS level FROM familytree WHERE parentID = root;
 REPEAT
 INSERT IGNORE INTO famsubtree
 SELECT f.childID, f.parentID, s.level+1
 FROM familytree AS f
 JOIN famsubtree AS s ON f.parentID = s.childID;
 UNTIL Row_Count() = 0 END REPEAT;
END go
DELIMITER ;
call famsubtree(1);
SELECT Concat(Space(level),parentID) AS Parent, Group_Concat(childID ORDER BY childID) AS Child
FROM famsubtree
GROUP BY parentID;
+--------+-------------------+
| Parent | Child |
+--------+-------------------+
1	2,3
2	4,5,6,7,8,9,10,11
6	12,13,14
8	15,16,17,18
12	19
14	20,21,22
19	23
+--------+-------------------+

Simple and quick. The logic ports to any edge list. We can prove that right now by writing a generic version. GenericTree()
just needs parameters for the name of the target table, the names of its child and parent ID columns, and the parent ID
whose descendants are sought:
Listing 7a: General-purpose edge list treewalk
CREATE PROCEDURE GenericTree(
 edgeTable CHAR(64), edgeIDcol CHAR(64), edgeParentIDcol CHAR(64), ancestorID INT)
BEGIN
 DECLARE r INT DEFAULT 0;
 DROP TABLE IF EXISTS subtree;
 SET @sql = Concat('CREATE TABLE subtree SELECT ',

Graphs in MySQL Page 481

 edgeIDcol,' AS childID, ',
 edgeParentIDcol, ' AS parentID,',
 '0 AS level FROM ',
 edgeTable, ' WHERE ', edgeParentIDcol, '=', ancestorID);
 PREPARE stmt FROM @sql;
 EXECUTE stmt;
 DROP PREPARE stmt;
 ALTER TABLE subtree ADD PRIMARY KEY(childID,parentID);
 REPEAT
 SET @sql = Concat('INSERT IGNORE INTO subtree SELECT a.', edgeIDcol,
 ',a.',edgeparentIDcol, ',b.level+1 FROM ',
 edgeTable, ' AS a JOIN subtree AS b ON a.',edgeParentIDcol, '=b.childID');
 PREPARE stmt FROM @sql;
 EXECUTE stmt;
 SET r=Row_Count(); -- save row_count() result before DROP PREPARE loses the value
 DROP PREPARE stmt;
 UNTIL r < 1 END REPEAT;
END ;

To retrieve details (e.g,. names) associated with node IDs, write a frontend query to join the subtree result table with the
required detail table(s), for example:

CALL GenericTree('familytree','childID','parentID',1);
SELECT Concat(Repeat(' ', s.level), a.name) AS Parent, b.name AS Child
FROM subtree s
JOIN family a ON s.parentID=a.ID
JOIN family b ON s.childID=b.ID;
+-----------------------+----------------------+
| Parent | Child |
+-----------------------+----------------------+
Richard Shakespeare	Henry Shakespeare
Richard Shakespeare	John Shakespeare
Henry Shakespeare	Joan Shakespeare
Henry Shakespeare	Margaret Shakespeare
Henry Shakespeare	William Shakespeare
Henry Shakespeare	Gilbert Shakespeare
Henry Shakespeare	Joan Shakespeare
Henry Shakespeare	Anne Shakespeare

Graphs in MySQL Page 482

Henry Shakespeare	Richard Shakespeare
Henry Shakespeare	Edmond Shakespeare
William Shakespeare	Susana Shakespeare
William Shakespeare	Hamnet Shakespeare
William Shakespeare	Judith Shakespeare
Joan Shakespeare	William Hart
Joan Shakespeare	Mary Hart
Joan Shakespeare	Thomas Hart
Joan Shakespeare	Michael Hart
Susana Shakespeare	Elizabeth Hall
Judith Shakespeare	Shakespeare Quiney
Judith Shakespeare	Richard Quiney
Judith Shakespeare	Thomas Quiney
Elizabeth Hall	John Bernard

+-----------------------+----------------------+

A GenericTree() result for the root node is a reachablity or closure table for the tree. Is the routine fast? On standard
hardware it walks a 5,000-node tree in less than 0.5 secs—much faster than a comparable nested sets query on the same
tree! It has no serious scaling issues. And its logic can be used to prune: call GenericTree() then delete the listed rows.
Better still, write a generic tree pruner from Listing 7a and add a DELETE command. To insert a subtree, prepare a table of
new rows, point its top edge at an existing node as parent, and INSERT it.

Logically, the edge list treewalk is recursive, so how about coding it recursively? Here is a recursive depth-first treewalk in
PHP on a mysqli connection for the familytree and family tables:

Listing 7b: Recursive edge list subtree in PHP
$info = recursivesubtree($conn, 1, $a = array(), 0);
foreach($info as $row)
 echo str_repeat(" ", 2*$row[4]), ($row[3] > 0) ? "{$row[1]}" : $row[1], "
";

function recursivesubtree($conn, $rootID, $a, $level) {
 $childcountqry = "(SELECT COUNT(*) FROM familytree WHERE parentID=t.childID) AS childcount";
 $qry = "SELECT t.childid,f.name,t.parentid,$childcountqry,$level " .
 "FROM familytree t JOIN family f ON t.childID=f.ID " .
 "WHERE parentid=$rootID ORDER BY childcount<>0,t.childID";
 $res = mysqli_query($conn, $qry);
 while($row = mysqli_fetch_row($res)) {

Graphs in MySQL Page 483

 $a[] = $row;
 if($row[3] > 0) $a = recursivesubtree($row[0], $a, $level+1); // down before right
 }
 return $a;
}

A query, a subquery, a fetch loop and a recursive call—that's all there is to it. A nice feature of this algorithm is that it
writes result rows in display-ready order. In MySQL, you must have set recursion depth in my.cnf/ini or in your client:
Listing 7c: Recursive edge list subtree
SET @@SESSION.max_sp_recursion_depth=25;
DELIMITER go
CREATE PROCEDURE recursivesubtree(iroot INT, ilevel INT)
BEGIN
 DECLARE irows,ichildid,iparentid,ichildcount,done INT DEFAULT 0;
 DECLARE cname VARCHAR(64);
 SET irows = (SELECT COUNT(*) FROM familytree WHERE parentID=iroot);
 IF ilevel = 0 THEN
 DROP TEMPORARY TABLE IF EXISTS _descendants;
 CREATE TEMPORARY TABLE _descendants (
 childID INT, parentID INT, name VARCHAR(64), childcount INT, level INT
);
 END IF;
 IF irows > 0 THEN
 BEGIN
 DECLARE cur CURSOR FOR
 SELECT childid,parentid,f.name,
 (SELECT COUNT(*) FROM familytree WHERE parentID=t.childID) AS childcount
 FROM familytree t JOIN family f ON t.childID=f.ID
 WHERE parentid=iroot
 ORDER BY childcount<>0,t.childID;
 DECLARE CONTINUE HANDLER FOR SQLSTATE '02000' SET done = 1;
 OPEN cur;
 WHILE NOT done DO
 FETCH cur INTO ichildid,iparentid,cname,ichildcount;
 IF NOT done THEN
 INSERT INTO _descendants VALUES(ichildid,iparentid,cname,ichildcount,ilevel);
 IF ichildcount > 0 THEN

Graphs in MySQL Page 484

 CALL recursivesubtree(ichildid, ilevel + 1);
 END IF;
 END IF;
 END WHILE;
 CLOSE cur;
 END;
 END IF;
 IF ilevel = 0 THEN -- Show result table headed by the name that corresponds to iroot:
 SET cname = (SELECT name FROM family WHERE ID=iroot);
 SET @sql = CONCAT('SELECT CONCAT(REPEAT(CHAR(32),2*level),IF(childcount,UPPER(name),name))',
 ' AS ', CHAR(39),'Descendants of ',cname,CHAR(39),' FROM _descendants');
 PREPARE stmt FROM @sql;
 EXECUTE stmt;
 DROP PREPARE stmt;
 END IF;
END go
DELIMITER ;
CALL recursivesubtree(1,0);

+------------------------------------+
| Descendants of Richard Shakespeare |
+------------------------------------+
| HENRY SHAKESPEARE |
| Joan Shakespeare |
| Margaret Shakespeare |
| WILLIAM SHAKESPEARE |
| SUSANA SHAKESPEARE |
| ELIZABETH HALL |
| John Bernard |
| Hamnet Shakespeare |
| JUDITH SHAKESPEARE |
| Shakespeare Quiney |
| Richard Quiney |
| Thomas Quiney |
| Gilbert Shakespeare |
| JOAN SHAKESPEARE |
| William Hart |
| Mary Hart |

Graphs in MySQL Page 485

| Thomas Hart |
| Michael Hart |
| Anne Shakespeare |
| Richard Shakespeare |
| Edmond Shakespeare |
| John Shakespeare |
+------------------------------------+

In MySQL this recursive treewalk can be 100 times slower than GenericTree()—slower even than Kendall Willet's depth-
first algorithm applied to the same tree:
Listing 7d: Depth-first edge list subtree
CREATE PROCEDURE depthfirstsubtree(iroot INT)
BEGIN
 DECLARE ilastvisited, inxt, ilastord INT;
 SET ilastvisited = iroot, ilastord = 1;
 DROP TABLE IF EXISTS descendants;
 CREATE TABLE descendants SELECT childID,parentID,-1 AS ord FROM familytree;
 UPDATE descendants SET ord=1 WHERE childID=iroot;
 this: LOOP
 SET inxt = NULL;
 SELECT MIN(childID) INTO inxt FROM descendants -- go down
 WHERE parentID = ilastvisited AND ord = -1 ;
 IF inxt IS NULL THEN -- nothing down, so go right
 SELECT MIN(d2.childID) INTO inxt
 FROM descendants d1
 JOIN descendants d2 ON d1.parentID = d2.parentID AND d1.childID < d2.childID
 WHERE d1.childID = ilastvisited;
 END IF;
 IF inxt IS NULL THEN -- nothing right. so go up
 SELECT parentID INTO inxt FROM descendants
 WHERE childID = ilastvisited AND parentID IS NOT NULL;
 END IF;
 UPDATE descendants SET ord = ilastord+1 WHERE childID=inxt AND ord=-1;
 IF ROW_COUNT() > 0 THEN
 SET ilastord = ilastord + 1;
 END IF;
 IF inxt IS NULL THEN

Graphs in MySQL Page 486

 LEAVE this;
 END IF;
 SET ilastvisited = inxt;
 END LOOP;
END;

One reason for this slowness is that MySQL does not permit multiple references to a temporary table in a query. When all
these algorithms are denied temporary tables, though, Willet's algorithm is still slower than the recursive version, and
both are far slower than GenericTree().

A simple procedure to retrieve a node’s ancestors:
Listing 7e: List a node’s ancestors
CREATE PROCEDURE ancestors(pid int)
BEGIN
 drop temporary table if exists _ancestors;
 create temporary table _ancestors(parent int);
 set @id = pid;
 repeat
 select parentID,count(*) into @parent,@y from familytree where childID=@id;
 if @y>0 then
 insert into _ancestors values(@parent);
 set @id=@parent;
 end if;
 until @parent is null or @y=0 end repeat;
 select * from _ancestors order by parent;
END;

Finally, since MariaDB 10.2.2 and MySQL 8.0.1 we can list tree nodes with a recursive CTE (see SELECT/WITH , Chapter 6):
a WITH clause to declare the derived table; a query to initialise that table with the root node; a UNION command; a
recursive join; and a final output SELECT. The initialising SELECT creates a root result row that needn’t be displayed:
Listing 7f: Liat tree nodes with a CTE
WITH RECURSIVE treewalk AS (
 SELECT
 CAST(1 AS UNSIGNED) AS childID, -- UNION NEEDS EXACT TYPE MATCH
 CAST(NULL AS UNSIGNED) AS parentID,
 CAST(0 AS UNSIGNED) AS level,
 0 AS siborder

Graphs in MySQL Page 487

 UNION ALL
 SELECT familytree.childID, familytree.parentID, treewalk.level+1 AS level, family.siborder
 FROM familytree
 JOIN treewalk ON familytree.parentID=treewalk.childID
 JOIN family ON family.ID=familytree.childID
)
SELECT
 Concat(Space(level-1), parentID) AS Parent,
 level-1 AS Depth,
 Group_Concat(childID ORDER BY siborder) AS Children
FROM treewalk
WHERE level>0
GROUP BY treewalk.parentID ORDER BY treewalk.parentID; -- Unset only_full_group_by sql_mode
+--------+-------+-------------------+
| Parent | Depth | Children |
+--------+-------+-------------------+
1	0	2,3
2	1	4,5,6,7,8,9,10,11
6	2	13,12,14
8	2	18,15,16,17
12	3	19
14	3	20,21,22
19	4	23
+--------+-------+-------------------+

The breadth-first logic is that of Listing 7., but the CTE treewalk is about ten times faster, and it implements recursion so
requires no stored routine. If the graph being traversed is not a tree, e.g., if it is cyclic, avoid an endless loop by changing
UNION ALL to UNION DISTINCT.

To walk a subtree, populate a comma-separated path column and order on it, e.g., for table infotree(id, parentid,
name) Listing 7g displays the subtree of node 5. To add other info to the display, dress up the final Select query with joins
to relevant tables.

A query can cascade CTEs. Without CTEs such a query probably needed temporary or intermediate tables. With CTEs, no
more. This alone may cut query running time by 50% or more—see “Treewalks with CTEs” on our Common Queries page.
Listing 7g: Use a CTE to walk a subtree
set @root=5; -- start with root value of desired subtree

https://www.artfulsoftware.com/infotree/queries.php

Graphs in MySQL Page 488

with recursive treewalk as (
 select id, 0 as level, cast(id as char(64)) as path, name
 from infotree
 where id=@root -- query for subtree root
 union
 select -- query for nodes
 t.id, tw.level+1 as level,
 concat(path, ',', t.id) as path, -- tree path down to this node
 t.name
 from infotree t
 join treewalk tw on t.parentid=tw.id
)
select * from treewalk order by path;

Edge list tree queries are easier to write, are more flexible, and run faster than their reputation suggests—especially with
CTEs. For a tree describing a parts explosion rather than a family, just add columns for weight, quantity, assembly time,
cost, price, etc.. Reports need only aggregation and summaries. We will revisit this near the end of this chapter.

Enumerating paths in an edge list

Path enumeration in an edge list model of a tree is almost as easy as depth-first subtree traversal:
• create a table for paths,
• seed it with paths of unit length from the tree table,
• iteratively add paths till there are no more to add.

MySQL's INSERT IGNORE command simplifies the code by removing the need for a NOT EXISTS(...) clause in the INSERT ...
SELECT statement. Since adjacencies are logically symmetrical, we make path direction the caller's choice, UP or DOWN. But
MySQL does impose an astonishing limitation: its TEMPORARY tables can be referenced only once per query!
Listing 8
DROP PROCEDURE IF EXISTS ListAdjacencyPaths;
DELIMITER go
CREATE PROCEDURE ListAdjacencyPaths(IN direction CHAR(5))
BEGIN
 DROP TABLE IF EXISTS paths;
 CREATE TABLE paths(

Graphs in MySQL Page 489

 start SMALLINT,stop SMALLINT,len SMALLINT,PRIMARY KEY(start,stop)
) ENGINE=HEAP;
 IF direction = 'UP' THEN
 INSERT INTO paths SELECT childID,parentID,1 FROM familytree;
 ELSE
 INSERT INTO paths SELECT parentID,childID,1 FROM familytree;
 END IF;
 WHILE ROW_COUNT() > 0 DO
 INSERT IGNORE INTO paths
 SELECT DISTINCT p1.start,p2.stop,p1.len + p2.len
 FROM paths AS p1 INNER JOIN paths AS p2 ON p1.stop = p2.start;
 END WHILE;
 SELECT start, stop, len FROM paths ORDER BY start, stop;
 DROP TABLE paths;
END;
go
DELIMITER ;

To find the paths from just one node, seed the paths table with paths from the starting node, then iteratively search a
JOIN of familytree and paths for edges which will extend existing paths in the user-specified direction:

Listing 8a
DROP PROCEDURE IF EXISTS ListAdjacencyPathsOfNode;
DELIMITER go
CREATE PROCEDURE ListAdjacencyPathsOfNode(IN node SMALLINT, IN direction CHAR(5))
BEGIN
 TRUNCATE paths;
 IF direction = 'UP' THEN
 INSERT INTO paths SELECT childID,parentID,1 FROM familytree WHERE childID = node;
 ELSE
 INSERT INTO paths SELECT parentID,childID,1 FROM familytree WHERE parentID = node;
 END IF;
 WHILE ROW_COUNT() > 0 DO
 IF direction = 'UP' THEN
 INSERT IGNORE INTO paths
 SELECT DISTINCT paths.start,familytree.parentID,paths.len + 1
 FROM paths JOIN familytree ON paths.stop = familytree.childID;
 ELSE

Graphs in MySQL Page 490

 INSERT IGNORE INTO paths
 SELECT DISTINCT paths.start,familytree.childID,paths.len + 1
 FROM paths JOIN familytree ON paths.stop = familytree.parentID;
 END IF;
 END WHILE;
 SELECT start, stop, len FROM paths ORDER BY start, stop;
END;
go
DELIMITER ;
CALL ListAdjacencyPathsOfNode(1,'DOWN');
+-------+------+------+
| start | stop | len |
+-------+------+------+
1	2	1
1	3	1
1	4	2
1	5	2
1	6	2
1	7	2
1	8	2
1	9	2
1	10	2
1	11	2
1	12	3
1	13	3
1	14	3
1	15	3
1	16	3
1	17	3
1	18	3
1	19	4
1	20	4
1	21	4
1	22	4
1	23	5
+-------+------+------+

With CTEs, path queries are far simpler, and they run much faster, e.g., find someone’s ancestors:

Graphs in MySQL Page 491

Listing 8b: List an individual’s ancestors (path to root):
WITH RECURSIVE ctepath AS (
 SELECT parentID FROM familytree WHERE childID=23 -- PARENT OF CHILDID 23
 UNION ALL
 SELECT f.parentID FROM familytree f -- AND THAT INDIVIDUAL’S PARENT ETC
 JOIN ctepath ON f.childID=ctepath.parentID
)
SELECT Group_Concat(parentID) As AncestorsOf23 FROM ctepath; -- RETURNS 19,12,6,2,1

These algorithms don't bend the brain. They perform acceptably with large trees, an order of magnitude faster with CTEs.
Querying edge-adjacency lists for subtrees and paths is less daunting than their reputation suggests.

Automate tree drawing!

Scrolling rows of tabular data may be the most boring objects on earth. How to quickly bring them alive? The Google
Visualization API library has an ‘OrgChart’ module that can make edge list trees look like Fig 2, but each instance needs
fifty or so lines of specific JavaScript code, plus an additional line of code for each row of data in the tree. Could we
autogenerate that code? Mais oui! The module needs child node and parent node columns of data, and accepts an optional
third column for info that pops up when the mouse hovers. Here is such a query for the Shakespeare family tree:
Listing 9
select concat(node.ID,' ', node.name) as node,
 if(edges.parentID is null, '', concat(parent.ID, ' ',parent.name)) as parent,
 if(node.born is null, 'Birthdate unknown', concat('Born ', node.born)) as tooltip
from family as node
left join familytree as edges on node.ID=edges.childID
left join family as parent on edges.parentID=parent.ID;

and here is a PHP function that returns HTML and JavaScript to paint an OrgChart for any tree query returning a string
node column, a string parent column, and optionally a string tooltip column:
Listing 9a
function orgchart($conn, $qry) { /* requires mysqli connection $conn */
 $cols = array(); $rows = array();
 $res = mysqli_query($conn, $qry) or exit(mysqli_error($conn));
 $colcount = mysqli_num_fields($res);
 if($colcount < 2) exit("Org chart needs two or three columns");
 $rowcount = mysqli_num_rows($res);

http://code.google.com/apis/visualization/documentation/gallery/orgchart.html

Graphs in MySQL Page 492

 for($i=0; $i<$colcount; $i++) $cols[] = mysqli_fetch_field($res);
 while($row = mysqli_fetch_row($res)) $rows[] = $row;
 echo "<html>\n<head>\n",
 " <script type='text/javascript' src='https://www.google.com/jsapi'></script>\n",
 " <script type='text/javascript'>\n",
 " google.load('visualization', '1', {'packages':['orgchart']});\n",
 " google.setOnLoadCallback(drawChart);\n",
 " function drawChart() {\n",
 " var data = new google.visualization.DataTable();\n";
 for($i=0; $i<$colcount; $i++) echo " data.addColumn('string','{$cols[$i]->name}')\n";
 echo " data.addRows([\n";
 for($j=0; $j<$rowcount; $j++) {
 $row = $rows[$j];
 $c = (($j < $rowcount-1) ? "," : "");
 echo " ['{$row[0]}','{$row[1]}','{$row[2]}']$c\n";
 }
 echo "]);\n",
 " var chart = new google.visualization.OrgChart(document.getElementById('chart_div'));\n",
 " var options = {'size':'small','allowHtml':'true',’allowCollapse’:’true’};\n",
 " chart.draw(data, options);\n",
 " }\n",
 " </script>\n</head>\n<body>\n<div id='chart_div'></div>\n</body>\n</html>";
}

Nested sets model of a tree
In Fig. 2 imagine an oval drawn round every leaf and every subtree in and a final oval round the entire tree. The tree is a
set. Each subtree is a subset. That is the basic idea of the nested sets model. The advantage of the nested sets model is that
root, leaves, subtrees, levels, tree height, ancestors, descendants and paths can be retrieved without recursion or
application language code. The disadvantages are:

• initial setup of the tree table can be difficult,
• queries for parents and children are slower and more complicated than with an edge list model,
• insertion, updates and deletion are extremely cumbersome since they may require updates to much of the tree.

Graphs in MySQL Page 493

Graphs in MySQL Page 494

The model depends on using a modified preorder tree traversal (MPTT) depth-first algorithm to assign each node left
and right integers which define the node's tree position. All nodes of a subtree have

• left values greater than the subtree parent's left value, and
• right values smaller than that of the subtree parent's right value.

so nested sets queries for subtrees are dead simple. If the numbering scheme is integer-sequential as in Fig 3, the root
node receives a left value of 1 and a right value equal to twice the item count.

To see how to code nested sets using MPTT, trace the ascending integers in Fig 3, starting with 1 on the left side of the root
node (Richard Shakespeare). Following edges downward and leftward, the left side of each box gets the next integer.

When you reach a leaf (Joan, left=3), the right side of that box gets the next integer (4). If there is another node to the right on the
same level, continue in that direction; otherwise continue up the right side of the subtree you just descended. When you arrive back at
the root on the right side, you're done. Down, right and up.

A serious problem with this scheme jumps out at you right away: after you've written the Fig 3 tree to a table, what if
historians discover an older brother or sister of Henry and John? Every row in the tree table must be updated!

Celko and others have proposed alternative numbering schemes to get round this problem, but the logical difficulty
remains: inserts and updates can invalidate many or all rows. No SQL CHECK or CONSTRAINT can prevent it. The nested sets
model is not good for trees which require frequent updates, and verges on unsupportable for large updatable trees that will
be accessed by many concurrent users. But as we'll see, it can be very useful indeed as a tree reporting tool.

Build a nested sets representation from an edge list

Obviously, numbering a tree by hand would be error-prone, seriously impractical for large trees, so it's usually best to code
the tree initially as an edge list, then use a stored procedure to translate the edge list representation to nested sets. Celko's
depth-first pushdown stack method will translate any edge list tree into a nested sets tree, though slowly:

1. Create a result table nestedsettree: node, leftedge, rightedge, and a stack pointer (top),
2. Seed it with the root node of the edge list, setting leftedge=1 and rightedge = 2 x (1 + tree size),
3. Initialise a counter nextedge to track the next required edge value, i.e. 1+1=2,

Graphs in MySQL Page 495

4. While that counter is less than the rightedge value of the root node ...
o insert a row for this parent’s smallest unwritten child, and drop down a level, or
o if we’re out of children, increment rightedge, write it to the current row, and back up a level.

This version handles edge list trees with or without a row containing the root node and its NULL parent:
Listing 10
DROP PROCEDURE IF EXISTS EdgeListToNestedSet;
DELIMITER go
CREATE PROCEDURE EdgeListToNestedSet(edgeTable CHAR(64), idCol CHAR(64), parentCol CHAR(64))
BEGIN
 DECLARE maxrightedge, rows SMALLINT DEFAULT 0;
 DECLARE trees, current SMALLINT DEFAULT 1;
 DECLARE nextedge SMALLINT DEFAULT 2;
 DECLARE msg CHAR(128);
 -- create working tree table as a copy of edgeTable
 DROP TEMPORARY TABLE IF EXISTS tree;
 CREATE TEMPORARY TABLE tree(childID INT, parentID INT);
 SET @sql = CONCAT('INSERT INTO tree SELECT ', idCol, ',', parentCol, ' FROM ', edgeTable);
 PREPARE stmt FROM @sql; EXECUTE stmt; DROP PREPARE stmt;
 -- initialise result table
 DROP TABLE IF EXISTS nestedsettree;
 CREATE TABLE nestedsettree (
 top SMALLINT, nodeID SMALLINT, leftedge SMALLINT, rightedge SMALLINT,
 KEY(nodeID,leftedge,rightedge)
) ENGINE=HEAP;
 -- root is child with NULL parent or parent which is not a child
 SET @nulls = (SELECT Count(*) FROM tree WHERE parentID IS NULL);
 IF @nulls>1 THEN SET trees=2;
 ELSEIF @nulls=1 THEN
 SET @root = (SELECT childID FROM tree WHERE parentID IS NULL);
 DELETE FROM tree WHERE childID=@root;
 ELSE
 SET @sql = CONCAT('SELECT Count(DISTINCT f.', parentcol, ') INTO @roots FROM ', edgeTable,
 ' f LEFT JOIN ', edgeTable, ' t ON f.', parentCol, '=', 't.', idCol,
 ' WHERE t.', idCol, ' IS NULL');
 PREPARE stmt FROM @sql; EXECUTE stmt; DROP PREPARE stmt;
 IF @roots <> 1 THEN SET trees=@roots;

Graphs in MySQL Page 496

 ELSE
 SET @sql = CONCAT('SELECT DISTINCT f.', parentCol, ' INTO @root FROM ', edgeTable,
 ' f LEFT JOIN ', edgeTable, ' t ON f.', parentCol, '=', 't.',
 idCol, ' WHERE t.', idCol, ' IS NULL');
 PREPARE stmt FROM @sql; EXECUTE stmt; DROP PREPARE stmt;
 END IF;
 END IF;
 IF trees<>1 THEN
 SET msg=IF(trees=0,"No tree found", "Table has multiple trees");
 SELECT msg AS 'Cannot continue';
 ELSE -- build nested sets tree
 SET maxrightedge = 2 * (1 + (SELECT COUNT(*) FROM tree));
 INSERT INTO nestedsettree VALUES(1, @root, 1, maxrightedge);
 WHILE nextedge < maxrightedge DO
 SET rows=(SELECT Count(*) FROM nestedsettree s JOIN tree t ON s.nodeID=t.parentID AND s.top=current);
 IF rows > 0 THEN
 BEGIN
 INSERT INTO nestedsettree
 SELECT current+1, MIN(t.childID), nextedge, NULL
 FROM nestedsettree AS s
 JOIN tree AS t ON s.nodeID = t.parentID AND s.top = current;
 DELETE FROM tree
 WHERE childID = (SELECT nodeID FROM nestedsettree WHERE top=(current+1));
 SET nextedge = nextedge + 1, current = current + 1;
 END;
 ELSE
 UPDATE nestedsettree SET rightedge=nextedge, top = -top WHERE top=current;
 SET nextedge=nextedge+1, current=current-1;
 END IF;
 END WHILE;
 -- show result
 IF (SELECT COUNT(*) FROM tree) > 0 THEN
 SELECT 'Orphaned rows remain';
 END IF;
 DROP TEMPORARY TABLE tree;
 END IF;
END;
go

Graphs in MySQL Page 497

DELIMITER ;
CALL EdgeListToNestedSet('familytree', 'childID', 'parentID', 1, 0);
SELECT
 nodeID, PersonName(nodeID) AS Name,
 ABS(top) AS 'Tree Level', leftedge AS 'Left', rightedge AS 'Right'
FROM nestedsettree
ORDER BY nodeID;
+--------+----------------------+------------+------+-------+
| nodeID | Name | Tree Level | Left | Right |
+--------+----------------------+------------+------+-------+
1	Richard Shakespeare	1	1	46
2	Henry Shakespeare	2	2	43
3	John Shakespeare	2	44	45
4	Joan Shakespeare	3	3	4
5	Margaret Shakespeare	3	5	6
6	William Shakespeare	3	7	24
7	Gilbert Shakespeare	3	25	26
8	Joan Shakespeare	3	27	36
9	Anne Shakespeare	3	37	38
10	Richard Shakespeare	3	39	40
11	Edmond Shakespeare	3	41	42
12	Susana Shakespeare	4	8	13
13	Hamnet Shakespeare	4	14	15
14	Judith Shakespeare	4	16	23
15	William Hart	4	28	29
16	Mary Hart	4	30	31
17	Thomas Hart	4	32	33
18	Michael Hart	4	34	35
19	Elizabeth Hall	5	9	12
20	Shakespeare Quiney	5	17	18
21	Richard Quiney	5	19	20
22	Thomas Quiney	5	21	22
23	John Bernard	6	10	11
+--------+----------------------+------------+------+-------+

Verify the function with a query that generates an edge list tree from a nested sets tree:
Listing 10a:

Graphs in MySQL Page 498

SELECT a.nodeID, b.nodeID AS parent
FROM nestedsettree AS a
LEFT JOIN nestedsettree AS b ON b.leftedge = (
 SELECT MAX(leftedge)
 FROM nestedsettree AS t
 WHERE a.leftedge > t.leftedge AND a.leftedge < t.rightedge
)
ORDER BY a.nodeID;

For how to keep multiple trees in one table, see “Multiple trees in one table” on our Queries page.

Finding a node's parent and children

In an edge list, a node’s parent is the parentID, and its children are the rows where that nodeID is parentID. In contrast,
nested sets queries for parents and their children are tortuous and slow. One way to fetch the child nodes of a given row is
to INNER JOIN the nested sets table AS parent to itself AS child ON child.leftedge BETWEEN parent.leftedge AND
parent.rightedge, then scope on the target row’s leftedge and rightedge values. In the resulting list, child.nodeID
values one level down occur once and are children, grandkids are two levels down and occur twice, and so on:
Listing 11
SELECT PersonName(child.nodeID) AS 'Descendants of William', COUNT(*) AS Generation
FROM nestedsettree AS parent
JOIN nestedsettree AS child ON child.leftedge BETWEEN parent.leftedge AND parent.rightedge
WHERE parent.leftedge > 7 AND parent.rightedge < 24 -- William’s leftedge, rightedge
GROUP BY child.nodeID;
+------------------------+------------+
| Descendants of William | Generation |
+------------------------+------------+
Susana Shakespeare	1
Hamnet Shakespeare	1
Judith Shakespeare	1
Elizabeth Hall	2
Shakespeare Quiney	2
Richard Quiney	2
Thomas Quiney	2
John Bernard	3

http://www.artfulsoftware.com/infotree/queries.php

Graphs in MySQL Page 499

+------------------------+------------+

Then HAVING COUNT(child.nodeID)=1 scopes retrieved rows to children:

Listing 11a
SELECT PersonName(child.nodeID) AS 'Children of William'
FROM nestedsettree AS parent
JOIN nestedsettree AS child ON child.leftedge BETWEEN parent.leftedge AND parent.rightedge
WHERE parent.leftedge > 7 AND parent.rightedge < 24
GROUP BY child.nodeID
HAVING COUNT(child.nodeID)=1
+---------------------+
| Children of William |
+---------------------+
| Susana Shakespeare |
| Hamnet Shakespeare |
| Judith Shakespeare |
+---------------------+

Retrieving a subtree or a subset of parents requires yet another join:
Listing 11b
SELECT Parent, Group_Concat(Child ORDER BY Child) AS Children
FROM (
 SELECT master.nodeID AS Parent, child.nodeID AS Child
 FROM nestedsettree AS master
 JOIN nestedsettree AS parent
 JOIN nestedsettree AS child ON child.leftedge BETWEEN parent.leftedge AND parent.rightedge
 WHERE parent.leftedge > master.leftedge AND parent.rightedge < master.rightedge
 GROUP BY master.nodeID, child.nodeID
 HAVING COUNT(*)=1) AS tmp
WHERE parent in(6,8,12,14)
GROUP BY Parent;
+--------+-------------------+
| Parent | Children |
+--------+-------------------+
6	12,13,14
8	15,16,17,18
12	19

Graphs in MySQL Page 500

| 14 | 20,21,22 |
+--------+-------------------+

This takes hundreds of times longer than a query for the same info from an edge list! An aggregating version of Listing 19
is easier to write, but is an even worse performer:
Listing 11c
SELECT p.nodeID AS Parent, Group_Concat(c.nodeID) AS Children
FROM nestedsettree AS p
JOIN nestedsettree AS c
 ON p.leftedge = (SELECT MAX(s.leftedge) FROM nestedsettree AS s
 WHERE c.leftedge > s.leftedge AND c.leftedge < s.rightedge)
GROUP BY Parent;

Logic which is reciprocal to that of Listing 11a gets us the parent of a node:

1. retrieve its leftedge and rightedge values,
2. compute its level,
3. find the node that is one level up and has edge values outside this node's leftedge and rightedge values.

Listing 12
DROP PROCEDURE IF EXISTS ShowNestedSetParent;
DELIMITER go
CREATE PROCEDURE ShowNestedSetParent(node SMALLINT)
BEGIN
 DECLARE level, thisleft, thisright SMALLINT DEFAULT 0;
 -- find node edges
 SELECT leftedge, rightedge INTO thisleft, thisright
 FROM nestedsettree
 WHERE nodeID = node;
 -- find node level
 SELECT COUNT(parent.nodeid) INTO level
 FROM nestedsettree AS parent
 JOIN nestedsettree AS child ON child.leftedge BETWEEN parent.leftedge AND parent.rightedge
 WHERE child.nodeid = node
 GROUP BY child.nodeid;
 -- find parent
 SELECT PersonName(n2.nodeid) AS Parent
 FROM nestedsettree AS n1

Graphs in MySQL Page 501

 JOIN nestedsettree AS n2 ON n2.leftedge BETWEEN n1.leftedge AND n1.rightedge
 WHERE n2.leftedge < 7 AND n2.rightedge > 24
 GROUP BY n2.nodeid
 HAVING COUNT(n2.nodeid) = level-1;
END;
go
DELIMITER ;
CALL ShowNestedSetParent(6);
+-------------------+
| Parent |
+-------------------+
| Henry Shakespeare |
+-------------------+

Other queries

For some query problems, edge list and nested sets queries are equivalently simple. For example, to find the tree root and
leaves, compare Listing 6 with:
Listing 13
SELECT
 name AS Paterfamilias,
 IFNULL(born,'?') AS Born,
 IFNULL(died,'?') AS Died
FROM nestedsettree AS t
INNER JOIN family AS f ON t.nodeID=f.ID
WHERE leftedge = 1;
+---------------------+------+------+
| Paterfamilias | Born | Died |
+---------------------+------+------+
| Richard Shakespeare | ? | 1561 |
+---------------------+------+------+
SELECT
 name AS 'Childless Shakespeares',
 IFNULL(born,'?') AS Born,
 IFNULL(died,'?') AS Died
FROM nestedsettree AS t

Graphs in MySQL Page 502

INNER JOIN family AS f ON t.nodeID=f.ID
WHERE rightedge = leftedge + 1;
+------------------------+------+------+
| Childless Shakespeares | Born | Died |
+------------------------+------+------+
Joan Shakespeare	1558	?
Margaret Shakespeare	1562	1563
John Bernard	?	1674
Hamnet Shakespeare	1585	1596
Shakespeare Quiney	1616	1617
Richard Quiney	1618	1639
Thomas Quiney	1620	1639
Gilbert Shakespeare	1566	1612
William Hart	1600	1639
Mary Hart	1603	1607
Thomas Hart	1605	1670
Michael Hart	1608	1618
Anne Shakespeare	1571	1579
Richard Shakespeare	1574	1613
Edmond Shakespeare	1580	1607
John Shakespeare	1530	1601
+------------------------+------+------+

As we saw in Listings 11 and 11a, finding subtrees in a nested sets model requires no stored procedure. To retrieve
descendants of William, just ask for the nodes whose leftedge values are greater, and whose rightedge values are
smaller than William's:
Listing 14
SELECT PersonName(t.nodeID) AS Descendant
FROM nestedsettree AS s
JOIN nestedsettree AS t ON s.leftedge < t.leftedge AND s.rightedge > t.rightedge
JOIN family f ON s.nodeID = f.ID
WHERE f.name = 'William Shakespeare';

Finding a single path in the nested sets model is about as complicated as edge list path enumeration (Listings 8, 9):
Listing 15
SELECT

Graphs in MySQL Page 503

 t2.nodeID AS Node,
 PersonName(t2.nodeID) AS Person,
 (SELECT COUNT(*)
 FROM nestedsettree AS t4
 WHERE t4.leftedge BETWEEN t1.leftedge AND t1.rightedge
 AND t2.leftedge BETWEEN t4.leftedge AND t4.rightedge
) AS Path
FROM nestedsettree AS t1
 JOIN nestedsettree AS t2 ON t2.leftedge BETWEEN t1.leftedge AND t1.rightedge
 JOIN nestedsettree AS t3 ON t3.leftedge BETWEEN t2.leftedge AND t2.rightedge
WHERE t1.nodeID=(SELECT ID FROM family WHERE name='William Shakespeare')
 AND t3.nodeID=(SELECT ID FROM family WHERE name='John Bernard');
+------+---------------------+------+
| Node | Person | Path |
+------+---------------------+------+
6	William Shakespeare	1
12	Susana Shakespeare	2
19	Elizabeth Hall	3
23	John Bernard	4
+------+---------------------+------+

Displaying the tree

Here the nested sets model shines. The arithmetic that built the tree makes short work of summary queries. For example
to retrieve a node list which preserves all parent-child relations, we need just two facts:

• listing order is the order taken in the node walk that created the tree, i.e. leftedge,
• a node's indentation depth is simply the JOIN (edge) count from root to node:

Listing 16
SELECT
 CONCAT(SPACE(2*COUNT(parent.nodeid)-2), PersonName(child.nodeid)) AS 'The Shakespeare Family Tree'
FROM nestedsettree AS parent
 INNER JOIN nestedsettree AS child
 ON child.leftedge BETWEEN parent.leftedge AND parent.rightedge
GROUP BY child.nodeid
ORDER BY child.leftedge;

Graphs in MySQL Page 504

+-----------------------------+
| The Shakespeare Family Tree |
+-----------------------------+
| Richard Shakespeare |
| Henry Shakespeare |
| Joan Shakespeare |
| Margaret Shakespeare |
| William Shakespeare |
| Susana Shakespeare |
| Elizabeth Hall |
| John Bernard |
| Hamnet Shakespeare |
| Judith Shakespeare |
| Shakespeare Quiney |
| Richard Quiney |
| Thomas Quiney |
| Gilbert Shakespeare |
| Joan Shakespeare |
| William Hart |
| Mary Hart |
| Thomas Hart |
| Michael Hart |
| Anne Shakespeare |
| Richard Shakespeare |
| Edmond Shakespeare |
| John Shakespeare |
+-----------------------------+

To retrieve only a subtree, add a query clause which restricts nodes to those whose edges are within the range of the parent
node's left and right edge values, for example for William and his descendants...

WHERE n1.leftedge >= 7 AND n1.rightedge <=24

Graphs in MySQL Page 505

Node insertions, updates and deletions

Nested set arithmetic also helps with insertions, updates and deletions, but the problem remains that changing just one
node can require changing much of the tree.

Inserting a node in the tree requires at least two pieces of information: the nodeID to insert, and the nodeID of its parent.
The model is normalised so the nodeID first must have been added to the parent (family) table. The algorithm for
adding the node to the tree is:

1. increment leftedge by 2 in nodes where the rightedge value is greater than the parent's rightedge,
2. increment rightedge by 2 in nodes where the leftedge value is greater than the parent's leftedge,
3. insert a row with the given nodeID, leftedge = 1 + parent's leftedge, rightedge = 2 + parent's leftedge.

That's not difficult, but all rows will have to be updated!
Listing 17
DROP PROCEDURE IF EXISTS InsertNestedSetNode;
DELIMITER go
CREATE PROCEDURE InsertNestedSetNode(IN node SMALLINT, IN parent SMALLINT)
BEGIN
 DECLARE parentleft, parentright SMALLINT DEFAULT 0;
 SELECT leftedge, rightedge
 INTO parentleft, parentright
 FROM nestedsettree
 WHERE nodeID = parent;
 IF FOUND_ROWS() = 1 THEN
 BEGIN
 UPDATE nestedsettree
 SET rightedge = rightedge + 2
 WHERE rightedge > parentleft;
 UPDATE nestedsettree
 SET leftedge = leftedge + 2
 WHERE leftedge > parentleft;
 INSERT INTO nestedsettree
 VALUES (0, node, parentleft + 1, parentleft + 2);

Graphs in MySQL Page 506

 END;
 END IF;
END;
go
DELIMITER ;

"Sibline" or horizontal order is obviously significant in family trees, but may not be significant in other trees. Listing 17
adds the new node at the left edge of the sibline. To specify another position, modify the procedure to accept a third
parameter for the nodeID which is to be to the left or right of the insertion point.

Updating a node in place requires nothing more than editing nodeID to point at a different parent row.

Deleting a node raises the problem of how to repair links severed by the deletion. In tree models of parts explosions, the
item to be deleted is often replaced by a new item, so it can be treated like a simple node update. In organisational boss-
employee charts, though, does a colleague move over, does a subordinate get promoted, does everybody in the subtree
move up a level, or does something else happen? No formula can catch all the possibilities. Listing 18 illustrates how to
handle two common scenarios, move everyone up, and move someone over. All possibilities except simple node replace-
ment involve changes elsewhere in the tree.
Listing 18
DROP PROCEDURE IF EXISTS DeleteNestedSetNode;
DELIMITER go
CREATE PROCEDURE DeleteNestedSetNode(IN mode CHAR(7), IN node SMALLINT)
BEGIN
 DECLARE thisleft, thisright SMALLINT DEFAULT 0;
 SELECT leftedge, rightedge
 INTO thisleft, thisright
 FROM nestedsettree
 WHERE nodeID = node;
 IF mode = 'PROMOTE' THEN
 BEGIN -- Ian Holsman found these bugs
 DELETE FROM nestedsettree
 WHERE nodeID = node;
 UPDATE nestedsettree
 SET leftedge = leftedge - 1, rightedge = rightedge - 1 -- not = thisleft
 WHERE leftedge BETWEEN thisleft AND thisright;

Graphs in MySQL Page 507

 UPDATE nestedsettree
 SET rightedge = rightedge - 2
 WHERE rightedge > thisright;
 UPDATE nestedsettree
 SET leftedge = leftedge - 2
 WHERE leftedge > thisright; -- not > thisleft
 END;
 ELSEIF mode = 'REPLACE' THEN
 BEGIN
 UPDATE nestedsettree
 SET leftedge = thisleft - 1, rightedge = thisright
 WHERE leftedge = thisleft + 1;
 UPDATE nestedsettree
 SET rightedge = rightedge - 2
 WHERE rightedge > thisleft;
 UPDATE nestedsettree
 SET leftedge = leftedge - 2
 WHERE leftedge > thisleft;
 DELETE FROM nestedsettree
 WHERE nodeID = node;
 END;
 END IF;
END;
go
DELIMITER ;

Nested set model summary

Some nested sets queries are quicker than some edge list counterparts. Some are slower. None are faster than edge list
queries using recursive CTEs. Given the concurrency nightmare that nested sets impose for inserts and deletions, the
nested sets model is probably best reserved for use with static trees where CTE’s aren’t available and queries mostly aim at
subtrees.

If you will be using the nested sets model, you may be converting back and forth with edge list models, so here is a simple
query to build an edge list from a nested sets tree:

Graphs in MySQL Page 508

Listing 19
SELECT p.nodeID AS parentID, c.nodeID AS childID
FROM nestedsettree AS p
JOIN nestedsettree AS c
 ON p.leftedge = (SELECT MAX(s.leftedge) FROM nestedsettree AS s
 WHERE c.leftedge > s.leftedge AND c.leftedge < s.rightedge)
ORDER BY p.nodeID;

Edge list model of a non-tree graph

Many graphs are not trees. Imagine a small airline which has just acquired licences for flights no longer than 6,000 km
between Los Angeles (LAX), New York (JFK), Heathrow in London, Charles de Gaulle in Paris, Amsterdam-Schiphol,
Arlanda in Sweden, and Helsinki-Vantaa. You have been asked to compute the shortest possible one-way routes that do
not deviate more than 90° from the direction of the first hop—roughly, one-way routes and no circuits.

Airports are nodes, flights are edges, routes are paths. We will need three tables.

Airports (nodes)

To identify an airport we need its code, location name, latitude and longitude. Latitude and longitude are usually given as
degrees, minutes and seconds, north or south of the equator, east or west of Greenwich. To hide details that aren't directly
relevant to nodes and edges, code latitude and longitude as simple reals where longitudes west of Greenwich and latitudes
south of the equator are negative, whilst longitudes east of Greenwich and latitudes north of the equator are positive:
Listing 20
CREATE TABLE airports (
 code char(3) NOT NULL,
 city char(100) default NULL,
 latitude float NOT NULL,
 longitude float NOT NULL,
 PRIMARY KEY (code)
) ;

INSERT INTO airports VALUES ('JFK', 'New York, NY', 40.75, -73.97);

Graphs in MySQL Page 509

INSERT INTO airports VALUES ('LAX', 'Los Angeles, CA', 34.05, -118.22);
INSERT INTO airports VALUES ('LHR', 'London, England', 51.5, -0.45);
INSERT INTO airports VALUES ('HEL', 'Helsinki, Finland', 60.17, 24.97);
INSERT INTO airports VALUES ('CDG', 'Paris, France', 48.86, 2.33);
INSERT INTO airports VALUES ('STL', 'St Louis, MO', 38.63, -90.2);
INSERT INTO airports VALUES ('ARN', 'Stockholm, Sweden', 59.33, 18.05);

Flights (edges)

The model attaches two weights to flights: distance and direction.

We need a method of calculating the Great Circle Distance—the geographical distance between any two cities - another
natural job for a stored function. The distance calculation

• converts to radians the degree coordinates of any two points on the earth's surface,
• calculates the angle of the arc subtended by the two points, and
• converts the result, also in radians, to surface (circumferential) kilometres (1 radian=6,378.388 km).

Listing 21
SET GLOBAL log_bin_trust_function_creators=TRUE; -- since 5.0.16
DROP FUNCTION IF EXISTS GeoDistKM;
DELIMITER go
CREATE FUNCTION GeoDistKM(lat1 FLOAT, lon1 FLOAT, lat2 FLOAT, lon2 FLOAT) RETURNS float
BEGIN
 DECLARE pi, q1, q2, q3 FLOAT;
 SET pi = PI();
 SET lat1 = lat1 * pi / 180;
 SET lon1 = lon1 * pi / 180;
 SET lat2 = lat2 * pi / 180;
 SET lon2 = lon2 * pi / 180;
 SET q1 = COS(lon1-lon2);
 SET q2 = COS(lat1-lat2);
 SET q3 = COS(lat1+lat2);
 SET rads = ACOS(0.5*((1.0+q1)*q2 - (1.0-q1)*q3));
 RETURN 6378.388 * rads;
END;

Graphs in MySQL Page 510

go
DELIMITER ;

That takes care of flight distances. Flight direction is, approximately, the arctangent (ATAN) of the difference between
flights.depart and flights.arrive latitudes and longitudes. Now we can seed the airline's flights table with
one-hop flights up to 6,000 km long:
Listing 22
CREATE TABLE flights (
 id INT PRIMARY KEY AUTO_INCREMENT,
 depart CHAR(3),
 arrive CHAR(3),
 distance DECIMAL(10,2),
 direction DECIMAL(10,2)
);

INSERT INTO flights
 SELECT
 NULL,
 depart.code,
 arrive.code,
 ROUND(GeoDistKM(depart.latitude,depart.longitude,arrive.latitude,arrive.longitude),2),
 ROUND(DEGREES(ATAN(arrive.latitude-depart.latitude,arrive.longitude-depart.longitude)),2)
 FROM airports AS depart
 INNER JOIN airports AS arrive ON depart.code <> arrive.code
 HAVING Km <= 6000;

SELECT * FROM flights;
+----+--------+--------+----------+-----------+
| id | depart | arrive | distance | direction |
+----+--------+--------+----------+-----------+
1	LAX	JFK	3941.18	8.61
2	LHR	JFK	5550.77	-171.68
3	CDG	JFK	5837.46	-173.93
4	STL	JFK	1408.11	7.44
5	JFK	LAX	3941.18	-171.39
6	STL	LAX	2553.37	-170.72
7	JFK	LHR	5550.77	8.32

Graphs in MySQL Page 511

8	HEL	LHR	1841.91	-161.17
9	CDG	LHR	354.41	136.48
10	ARN	LHR	1450.12	-157.06
11	LHR	HEL	1841.91	18.83
12	CDG	HEL	1912.96	26.54
13	ARN	HEL	398.99	6.92
14	JFK	CDG	5837.46	6.07
15	LHR	CDG	354.41	-43.52
16	HEL	CDG	1912.96	-153.46
17	ARN	CDG	1545.23	-146.34
18	JFK	STL	1408.11	-172.56
19	LAX	STL	2553.37	9.28
20	LHR	ARN	1450.12	22.94
21	HEL	ARN	398.99	-173.08
22	CDG	ARN	1545.23	33.66
+----+--------+--------+----------+-----------+

The distances agree approximately with public information sources for flight lengths. For a pair of airports A and B not
very near the poles, the error in calculating direction using ATAN(), is small. To remove that error, use a formula from
spherical trigonometry (for example at http://www.boeing-727.com/Data/fly%20odds/distance.html) instead of
ATAN().

Routes (paths)

A route is a path along one or more of these edges, so flights:routes is a 1:many relationship. For simplicity, though,
it’s efficient to denormalise representation of routes with a variation of the materialised path model to store all the hops of
one route as a list of flights in one routes column. The column routes.route is the sequence of airports, from first
departure to final arrival, the column routes.hops is the number of hops in that route, and the column routes.
direction is the direction:

Listing 23
CREATE TABLE routes (
 id INT PRIMARY KEY AUTO_INCREMENT,
 depart CHAR(3),
 arrive CHAR(3),
 hops SMALLINT,

http://www.dynagen.co.za/eugene/where/formula.html

Graphs in MySQL Page 512

 route CHAR(50),
 distance DECIMAL(10,2),
 direction DECIMAL(10,2)
);

Starting with an empty routes table, how do we populate it with the shortest routes between all ordered pairs of
airports?

1. Insert all 1-hop flights from the flights table.
2. Add in the set of shortest multi-hop routes for all pairs of airports which don't have rows in the flights table.

For 1-hop flights we just write:
Listing 24
INSERT INTO routes
 SELECT NULL,depart,arrive,1,CONCAT(depart,',',arrive),distance,direction
 FROM flights;

NULL is a placeholder for the auto-incrementing id column.

For multi-hop routes, iteratively add in sets of all allowed 2-hop, 3-hop, ... n-hop routes, replacing longer routes by shorter
routes as we find them, until there is nothing more to add or replace. That also decpmposes to two logical steps: add hops
to build the set of next allowed routes, and update longer routes with shorter ones.

Next allowed routes

The set of next allowed routes is the set of shortest routes that can be built by adding, to existing routes, flights that leave
from the last arrival airport of an existing route, arrive at an airport not yet in the given route, and stay within ± 90° of the
route's initial compass direction. So every new route is a JOIN between routes and flights where …

• depart = routes.depart,
• arrive = flights.arrive,
• flights.depart = routes.arrive,
• distance = MIN(routes.distance + flights.distance),
• LOCATE(flights.arrive,routes.route) = 0,

Graphs in MySQL Page 513

• flights.direction+360 > routes.direction+270 AND flights.direction+360 < routes.direction+450

This looks like a natural logical unit of work for a View:
Listing 25
CREATE OR REPLACE VIEW nextroutes AS
 SELECT
 routes.depart, flights.arrive, routes.hops+1 AS hops,
 CONCAT(routes.route, ',', flights.arrive) AS route,
 MIN(routes.distance + flights.distance) AS distance, routes.direction
 FROM routes
 JOIN flights ON routes.arrive = flights.depart AND LOCATE(flights.arrive,routes.route) = 0
 WHERE flights.direction BETWEEN routes.direction-90 AND routes.direction+90
 GROUP BY depart,arrive;

How to add these new hops to routes? In standard SQL, this variant on a query by Scott Stephens should do it...

Listing 26
INSERT INTO routes
 SELECT NULL,depart,arrive,hops,route,distance,direction FROM nextroutes
 WHERE (nextroutes.depart,nextroutes.arrive) NOT IN (
 SELECT depart,arrive FROM routes
);

but MySQL does not yet support subqueries on the update table. No worries, rewriting the subquery as a join speeds it up:
Listing 27
INSERT INTO routes
 SELECT NULL, nextroutes.depart, nextroutes.arrive, nextroutes.hops,
 nextroutes.route, nextroutes.distance, nextroutes.direction
 FROM nextroutes
 LEFT JOIN routes ON nextroutes.depart = routes.depart AND nextroutes.arrive = routes.arrive
 WHERE routes.ID IS NULL;

Running that code right after the initial seeding from flights gives ...

SELECT * FROM routes;
+----+--------+--------+------+-------------+----------+-----------+
| id | depart | arrive | hops | route | distance | direction |
+----+--------+--------+------+-------------+----------+-----------+

Graphs in MySQL Page 514

1	LAX	JFK	1	LAX,JFK	3941.18	8.61
2	LHR	JFK	1	LHR,JFK	5550.77	-171.68
3	CDG	JFK	1	CDG,JFK	5837.46	-173.93
4	STL	JFK	1	STL,JFK	1408.11	7.44
5	JFK	LAX	1	JFK,LAX	3941.18	-171.39
6	STL	LAX	1	STL,LAX	2553.37	-170.72
7	JFK	LHR	1	JFK,LHR	5550.77	8.32
8	HEL	LHR	1	HEL,LHR	1841.91	-161.17
9	CDG	LHR	1	CDG,LHR	354.41	136.48
10	ARN	LHR	1	ARN,LHR	1450.12	-157.06
11	LHR	HEL	1	LHR,HEL	1841.91	18.83
12	CDG	HEL	1	CDG,HEL	1912.96	26.54
13	ARN	HEL	1	ARN,HEL	398.99	6.92
14	JFK	CDG	1	JFK,CDG	5837.46	6.07
15	LHR	CDG	1	LHR,CDG	354.41	-43.52
16	HEL	CDG	1	HEL,CDG	1912.96	-153.46
17	ARN	CDG	1	ARN,CDG	1545.23	-146.34
18	JFK	STL	1	JFK,STL	1408.11	-172.56
19	LAX	STL	1	LAX,STL	2553.37	9.28
20	LHR	ARN	1	LHR,ARN	1450.12	22.94
21	HEL	ARN	1	HEL,ARN	398.99	-173.08
22	CDG	ARN	1	CDG,ARN	1545.23	33.66
23	ARN	JFK	2	ARN,LHR,JFK	7000.89	-157.06
24	CDG	LAX	2	CDG,JFK,LAX	9778.64	-173.93
25	CDG	STL	2	CDG,JFK,STL	7245.57	-173.93
26	HEL	JFK	2	HEL,LHR,JFK	7392.68	-161.17
27	JFK	ARN	2	JFK,LHR,ARN	7000.89	8.32
28	JFK	HEL	2	JFK,LHR,HEL	7392.68	8.32
29	LAX	CDG	2	LAX,JFK,CDG	9778.64	8.61
30	LAX	LHR	2	LAX,JFK,LHR	9491.95	8.61
31	LHR	LAX	2	LHR,JFK,LAX	9491.95	-171.68
32	LHR	STL	2	LHR,JFK,STL	6958.88	-171.68
33	STL	CDG	2	STL,JFK,CDG	7245.57	7.44
34	STL	LHR	2	STL,JFK,LHR	6958.88	7.44
+----+--------+--------+------+-------------+----------+-----------+

... adding 12 two-hop rows.

Graphs in MySQL Page 515

Replace longer routes with shorter ones

As we build routes with more hops, it is logically possible that the nextroutes view will find shorter routes for an
existing routes pair of depart and arrive. Standard SQL for replacing existing routes rows with nextroutes rows
which match (depart, arrive) and have shorter distance values would be:

Listing 28
UPDATE routes SET (hops,route,distance,direction) = (
 SELECT hops, route, distance, direction
 FROM nextroutes
 WHERE nextroutes.depart = routes.depart AND nextroutes.arrive = routes.arrive
)
WHERE (depart,arrive) IN (
 SELECT depart,arrive FROM nextroutes
 WHERE nextroutes.distance < routes.distance
);

but MySQL does not support SET(col1,...) syntax, and as with Listing 27, MySQL does not yet accept subqueries
referencing the table being updated, so we need more literal SQL:
Listing 29
UPDATE routes
JOIN nextroutes USING(arrive,depart)
SET
 routes.hops=nextroutes.hops,
 routes.route=nextroutes.route,
 routes.distance=nextroutes.distance,
 routes.direction=nextroutes.direction
WHERE nextroutes.distance < routes.distance;

Running this code right after the first run of Listing 27 updates no rows. To test the logic of iteration, continue running
Listings 27 and 29 until no rows are being added or changed. The final result is:

SELECT * FROM ROUTES;
+----+--------+--------+------+-----------------+----------+-----------+
| id | depart | arrive | hops | route | distance | direction |
+----+--------+--------+------+-----------------+----------+-----------+

Graphs in MySQL Page 516

1	LAX	JFK	1	LAX,JFK	3941.18	8.61
2	LHR	JFK	1	LHR,JFK	5550.77	-171.68
3	CDG	JFK	1	CDG,JFK	5837.46	-173.93
4	STL	JFK	1	STL,JFK	1408.11	7.44
5	JFK	LAX	1	JFK,LAX	3941.18	-171.39
6	STL	LAX	1	STL,LAX	2553.37	-170.72
7	JFK	LHR	1	JFK,LHR	5550.77	8.32
8	HEL	LHR	1	HEL,LHR	1841.91	-161.17
9	CDG	LHR	1	CDG,LHR	354.41	136.48
10	ARN	LHR	1	ARN,LHR	1450.12	-157.06
11	LHR	HEL	1	LHR,HEL	1841.91	18.83
12	CDG	HEL	1	CDG,HEL	1912.96	26.54
13	ARN	HEL	1	ARN,HEL	398.99	6.92
14	JFK	CDG	1	JFK,CDG	5837.46	6.07
15	LHR	CDG	1	LHR,CDG	354.41	-43.52
16	HEL	CDG	1	HEL,CDG	1912.96	-153.46
17	ARN	CDG	1	ARN,CDG	1545.23	-146.34
18	JFK	STL	1	JFK,STL	1408.11	-172.56
19	LAX	STL	1	LAX,STL	2553.37	9.28
20	LHR	ARN	1	LHR,ARN	1450.12	22.94
21	HEL	ARN	1	HEL,ARN	398.99	-173.08
22	CDG	ARN	1	CDG,ARN	1545.23	33.66
23	ARN	JFK	2	ARN,LHR,JFK	7000.89	-157.06
24	CDG	LAX	2	CDG,JFK,LAX	9778.64	-173.93
25	CDG	STL	2	CDG,JFK,STL	7245.57	-173.93
26	HEL	JFK	2	HEL,LHR,JFK	7392.68	-161.17
27	JFK	ARN	2	JFK,LHR,ARN	7000.89	8.32
28	JFK	HEL	2	JFK,LHR,HEL	7392.68	8.32
29	LAX	CDG	2	LAX,JFK,CDG	9778.64	8.61
30	LAX	LHR	2	LAX,JFK,LHR	9491.95	8.61
31	LHR	LAX	2	LHR,JFK,LAX	9491.95	-171.68
32	LHR	STL	2	LHR,JFK,STL	6958.88	-171.68
33	STL	CDG	2	STL,JFK,CDG	7245.57	7.44
34	STL	LHR	2	STL,JFK,LHR	6958.88	7.44
35	ARN	LAX	3	ARN,LHR,JFK,LAX	10942.07	-157.06
36	ARN	STL	3	ARN,LHR,JFK,STL	8409.00	-157.06
37	HEL	LAX	3	HEL,LHR,JFK,LAX	11333.86	-161.17
38	HEL	STL	3	HEL,LHR,JFK,STL	8800.79	-161.17

Graphs in MySQL Page 517

39	LAX	ARN	3	LAX,JFK,CDG,ARN	10942.07	8.61
40	LAX	HEL	3	LAX,JFK,CDG,HEL	11333.86	8.61
41	STL	ARN	3	STL,JFK,CDG,ARN	8409.00	7.44
42	STL	HEL	3	STL,JFK,CDG,HEL	8800.79	7.44
+----+--------+--------+------+-----------------+----------+-----------+

All that's left to do is to assemble the code in a stored procedure:
Listing 30
DROP PROCEDURE IF EXISTS BuildRoutes;
DELIMITER go
CREATE PROCEDURE BuildRoutes()
BEGIN
 DECLARE rows INT DEFAULT 0;
 TRUNCATE routes;
 -- STEP 1, LISTING 24: SEED ROUTES WITH 1-HOP FLIGHTS
 INSERT INTO routes (depart, arrive, hops, route, distance, direction)
 SELECT depart, arrive, 1, CONCAT(depart,',',arrive), distance, direction
 FROM flights;
 SET rows = ROW_COUNT();
 WHILE (rows > 0) DO
 -- STEP 2, LISTINGS 25, 27: ADD NEXT SET OF ROUTES
 INSERT INTO routes (depart, arrive, hops, route, distance, direction)
 SELECT nextroutes.depart, nextroutes.arrive, nextroutes.hops,
 nextroutes.route, nextroutes.distance, nextroutes.direction
 FROM nextroutes
 LEFT JOIN routes ON nextroutes.depart=routes.depart AND nextroutes.arrive=routes.arrive
 WHERE routes.ID IS NULL;
 SET rows = ROW_COUNT();
 -- STEP 3, UPDATE SHORTER ROUTES IF ANY
 UPDATE routes
 JOIN nextroutes USING(arrive,depart)
 SET routes.hops=nextroutes.hops, routes.route=nextroutes.route,
 routes.distance=nextroutes.distance, routes.direction=nextroutes.direction
 WHERE nextroutes.distance < routes.distance;
 END WHILE;
END;
go

Graphs in MySQL Page 518

DELIMITER ;

The procedure looks like a candidate for translation a CTE, but update command and the two joins to routes, the table
being written to, (one in the nextroutes View, one in the insert loop) defeat the CTE engines in both MariaDB and
Postgres.

Route queries

Route queries are straightforward. How do we check that the algorithm produced no duplicate depart-arrive pairs?
The following query should yield zero rows…
Listing 31
SELECT depart, arrive, COUNT(*)
FROM routes
GROUP BY depart,arrive
HAVING COUNT(*) > 1;

and does. Reachability queries are just as simple, for example where can we fly to from Helsinki?
Listing 32
SELECT *
FROM routes
WHERE depart='HEL'
ORDER BY distance;
+----+--------+--------+------+-----------------+----------+-----------+
| id | depart | arrive | hops | route | distance | direction |
+----+--------+--------+------+-----------------+----------+-----------+
21	HEL	ARN	1	HEL,ARN	398.99	-173.08
8	HEL	LHR	1	HEL,LHR	1841.91	-161.17
16	HEL	CDG	1	HEL,CDG	1912.96	-153.46
26	HEL	JFK	2	HEL,LHR,JFK	7392.68	-161.17
38	HEL	STL	3	HEL,LHR,JFK,STL	8800.79	-161.17
37	HEL	LAX	3	HEL,LHR,JFK,LAX	11333.86	-161.17
+----+--------+--------+------+-----------------+----------+-----------+

Graphs in MySQL Page 519

An extended edge list model is simple to implement, gracefully accepts extended attributes for nodes, edge and paths, does
not unduly penalise updates, and responds to queries with reasonable speed.

Parts explosions

A bill of materials for a house would include the cement block, lumber, shingles, doors, wallboard, windows, plumbing,
electrical system, heating system, and so on. Each subassembly also has a bill of materials; the heating system has a
furnace, ducts, and so on. A bill of materials implosion links component pieces to a major assembly. A bill of materials
explosion breaks apart assemblies and subassemblies into their component parts.

Which graph model best handles a parts explosion? Combining edge list and nested sets algorithms seems a natural
solution.

Imagine a company that plans to make variously sized bookcases, either packaged as do-it-yourself kits of, or assembled
from sides, shelves, shelf brackets, backboards, feet and screws. Shelves and sides are cut from planks. Backboards are
trimmed from laminated sheeting. Feet are machine-carved from readycut blocks. Screws and shelf brackets are
purchased in bulk. Here are the elements of one bookcase:

 1 backboard, 2 x 1 m
 1 laminate
 8 screws
 2 sides 2m x 30 cm
 1 plank length 4m
 12 screws
 8 shelves 1 m x 30 cm (incl. top and bottom)
 2 planks
 24 shelf brackets
 4 feet 4cm x 4cm
 4 cubes
 16 screws

which may be packaged in a box for sale at one price, or assembled as a finished product at a different price. At any time
we need to be able to answer questions like

Graphs in MySQL Page 520

• Do we have enough parts to make the bookcases on order?
• What assemblies or packages would be most profitable to make given the current inventory?

To normalise, put items and their details in a nodes table and assembly information in an edges table. Note that often, as
in our example …

• an item occurs in multiple subassemblies (e.g., many parts require screws), so the graph is cyclic, not a tree.

• it would be cumbersome to require creation of a new assembly table for each new product, so the assemblies table
should track multiple products.

Then let one row in the items (nodes) table define a component with columns for ID, name, quantity on hand, quantity
reserved, purchase cost and labour/assembly cost. An item may be simple (e.g., a plank), complex (e.g., a backboard
consisting of a laminate and 8 screws), or a complete product (e.g., an assembled bookcase). The items table tracks
inventory.

Let one row in the assemblies (edges) table define a parent-child relationship between two items in a subassembly. Then a
subassembly is a set of such rows, and a product is set of such subassemblies.

Assume that the company begins with a plan to sell the 2m x 1m bookcase in two forms, assembled and kit, and that the
purchasing department has bought quantities of raw materials (laminate, planks, shelf supports, screws, wood cubes,
boxes). Here are the nodes (items) and edges (assemblies):
Listing 33
CREATE TABLE items (
 itemID INT PRIMARY KEY AUTO_INCREMENT,
 name CHAR(20) NOT NULL,
 onhand INT NOT NULL DEFAULT 0,
 reserved INT NOT NULL DEFAULT 0,
 purchasecost DECIMAL(10,2) NOT NULL DEFAULT 0,
 assemblycost DECIMAL(10,2) NOT NULL DEFAULT 0,
 price DECIMAL(10,2) NOT NULL DEFAULT 0
);
CREATE TABLE assemblies (
 assemblyID INT NOT NULL,
 assemblyroot INT NOT NULL,

Graphs in MySQL Page 521

 childID INT NOT NULL,
 parentID INT NOT NULL,
 quantity DECIMAL(10,2) NOT NULL,
 assemblycost DECIMAL(10,2) NOT NULL,
 PRIMARY KEY(assemblyID,childID,parentID)
);
INSERT INTO items VALUES -- inventory
 (1,'laminate',40,0,4,0,8),(2,'screw',1000,0,0.1,0,.2),(3,'plank',200,0,10,0,20),
 (4,'shelf bracket',400,0,0.20,0,.4),(5,'wood cube',100,0,0.5,0,1),(6,'box',40,0,1,0,2),
 (7,'backboard',0,0,0,3,0),(8,'side',0,0,0,8,0),(9,'shelf',0,0,0,4,0),
 (10,'foot',0,0,0,1,0),(11,'bookcase2x30',0,0,0,10,0),(12,'bookcase2x30 kit',0,0,0,2,0);
INSERT INTO assemblies VALUES
 (1,11,1,7,1,0), -- laminate to backboard
 (2,11,2,7,8,0), -- screws to backboard
 (3,11,3,8,.5,0), -- planks to side
 (4,11,2,8,6,0), -- screws to side
 (5,11,3,9,0.25,0), -- planks to shelf
 (6,11,4,9,4,0), -- shelf brackets to shelf
 (7,11,5,10,1,0), -- wood cubes to foot
 (8,11,2,10,1,0), -- screws to foot
 (9,11,7,11,1,0), -- backboard to bookcase
 (10,11,8,11,2,0), -- sides to bookcase
 (11,11,9,11,8,0), -- shelves to bookcase
 (12,11,10,11,4,0), -- feet to bookcase
 (13,12,1,7,1,0), -- laminate to backboard
 (14,12,2,7,8,0), -- screws to backboard
 (15,12,3,8,0.5,0), -- planks to side
 (16,12,2,8,6,0), -- screws to sides
 (17,12,3,9,0.25,0), -- planks to shelf
 (18,12,4,9,4,0), -- shelf brackets to shelves
 (19,12,5,10,1,0), -- wood cubes to foot
 (20,12,2,10,1,0), -- screws to foot
 (21,12,7,12,1,0), -- backboard to bookcase kit
 (22,12,8,12,2,0), -- sides to bookcase kit
 (23,12,9,12,8,0), -- shelves to bookcase kit
 (24,12,10,12,4,0), -- feet to bookcase kit
 (25,12,6,12,1,0); -- container box to bookcase kit

Graphs in MySQL Page 522

Now, we want a parts list, a bill of materials showing parent-child relationships, quantities, and costs. Could we adapt the
depth-first nested sets treewalk algorithm (Listing 10) to this problem even when our graph is not a tree and our sets are
not properly nested? Yes: touch up the treewalk to handle multiple parent nodes for any child node, and add code to
percolate quantities and costs up the graph. Navigation remains simple using leftedge and rightedge values.

Listing 34
DROP PROCEDURE IF EXISTS ShowBOM;
DELIMITER go
CREATE PROCEDURE ShowBOM(IN root INT)
BEGIN
 DECLARE thischild, thisparent, rows, maxrightedge INT DEFAULT 0;
 DECLARE thislevel, nextedgenum INT DEFAULT 1;
 DECLARE thisqty, thiscost DECIMAL(10,2);
 -- Create and seed intermediate table:
 DROP TABLE IF EXISTS edges;
 CREATE TABLE edges (
 childID smallint NOT NULL,
 parentID smallint NOT NULL,
 PRIMARY KEY (childID, parentID)
) ENGINE=HEAP;
 INSERT INTO edges
 SELECT childID,parentID
 FROM assemblies
 WHERE assemblyRoot = root;
 SET maxrightedge = 2 * (1 + (SELECT COUNT(*) FROM edges));
 -- Create and seed result table:
 DROP TABLE IF EXISTS bom;
 CREATE TABLE bom (
 level SMALLINT,
 nodeID SMALLINT,
 parentID SMALLINT,
 qty DECIMAL(10,2),
 cost DECIMAL(10,2),
 leftedge SMALLINT,
 rightedge SMALLINT
) ENGINE=HEAP;
 INSERT INTO bom VALUES(thislevel, root, 0, 0, 0, nextedgenum, maxrightedge);

Graphs in MySQL Page 523

 SET nextedgenum = nextedgenum + 1;
 WHILE nextedgenum < maxrightedge DO
 -- How many children of this node remain in the edges table?
 SET rows = (
 SELECT COUNT(*)
 FROM bom AS p
 JOIN edges AS c ON p.nodeID=c.parentID AND p.level=thislevel
);
 IF rows > 0 THEN
 -- Child edge exists. Compute qty & cost, insert in bom, delete from edges.
 BEGIN
 -- Alas MySQL nulls MIN(t.childid) when we combine the next two queries
 SET thischild = (
 SELECT MIN(c.childID)
 FROM bom AS p
 INNER JOIN edges AS c ON p.nodeID=c.parentID AND p.level=thislevel
);
 SET thisparent = (
 SELECT DISTINCT c.parentID
 FROM bom AS p
 INNER JOIN edges AS c ON p.nodeID=c.parentID AND p.level=thislevel
);
 SET thisqty = (
 SELECT quantity FROM assemblies
 WHERE assemblyroot = root
 AND childID = thischild
 AND parentID = thisparent
);
 SET thiscost = (
 SELECT thisqty * (a.assemblycost + i.purchasecost + i.assemblycost)
 FROM assemblies AS a
 JOIN items AS i ON a.childID = i.itemID
 WHERE assemblyroot = root
 AND a.parentID = thisparent
 AND a.childID = thischild
);
 INSERT INTO bom
 VALUES(thislevel+1, thischild, thisparent, thisqty, thiscost, nextedgenum, NULL);

Graphs in MySQL Page 524

 DELETE FROM edges WHERE childID=thischild AND parentID=thisparent;
 SET thislevel = thislevel + 1, nextedgenum = nextedgenum + 1;
 END;
 ELSE
 BEGIN
 -- Set rightedge, remove item from edges
 UPDATE bom
 SET rightedge=nextedgenum, level = -level
 WHERE level = thislevel;
 SET thislevel = thislevel – 1, nextedgenum = nextedgenum + 1;
 END;
 END IF;
 END WHILE;
 SET rows := (SELECT COUNT(*) FROM edges);
 IF rows > 0 THEN
 SELECT 'Orphaned rows remain';
 ELSE
 BEGIN
 SET thiscost = (SELECT SUM(cost*qty) FROM bom);
 UPDATE bom SET qty=1, cost=thiscost WHERE nodeID = root;
 SELECT
 CONCAT(Space(Abs(level)*2), ItemName(nodeid,root)) AS Item,
 ROUND(qty,1) AS Qty,
 ROUND(cost,2) AS Cost
 FROM bom
 ORDER BY leftedge;
 END;
 END IF;
END;
go
DELIMITER ;
CALL SHOWBOM(11);
+---------------------+------+--------+
| Item | Qty | Cost |
+---------------------+------+--------+
BOOKCASE2X30	1.0	327.93
backboard	1.0	3.00
laminate	1.0	4.00

Graphs in MySQL Page 525

screw	8.0	0.80
side	2.0	16.00
screw	6.0	0.60
plank	0.5	5.00
shelf	8.0	32.00
plank	0.3	2.50
shelf bracket	4.0	0.80
foot	4.0	4.00
screw	1.0	0.10
wood cube	1.0	0.50
+---------------------+------+--------+

With ShowBOM() in hand, it's easy to compare costs of assemblies and subassemblies. By adding price columns, we can do
the same for prices and profit margins. And now that MySQL has re-enabled prepared statements in stored procedures, it
will be relatively easy to write a more general version of ShowBOM().

Shorter and sweeter

But ShowBOM() is not the small, efficient bit of nested sets reporting code we'd hoped for from the nested sets model. There
is a simpler solution: hide the graph cycles from the edges table by making them references to rows in a nodes table, so we
can treat the edges table like a tree; then apply a breadth-first edge-list subtree algorithm to generate the Bill of Materials.
Again assume a cabinetmaking company making bookcases. The costing model differs a bit from Listing 33, and for clarity
we skip inventory tracking. An items table ww_nodes tracks purchased and assembled bookcase elements with their
individual costs, and an assemblies/edges ww_edges table tracks sets of edges that combine to make products.

Listing 35: DDL for a simpler parts explosion
DROP TABLE IF EXISTS ww_nodes;
CREATE TABLE ww_nodes (
 nodeID int,
 description CHAR(50),
 cost decimal(10,2)
);
INSERT INTO ww_nodes VALUES
(1,'finished bookcase',10),(2,'backboard2x1',1),(3,'laminate2x1',8),(4,'screw',.10),

Graphs in MySQL Page 526

(5,'side',4),(6,'plank',20),(7,'shelf',4),(8,'shelf bracket',.5),(9,'foot',1),
(10,'cube4cmx4cm',1),(11,'bookcase kit',2),(12,'carton',1);
DROP TABLE IF EXISTS ww_edges;
CREATE TABLE ww_edges (
 rootID INT,
 nodeID int,
 parentnodeID int,
 qty decimal(10,2)
);
INSERT INTO ww_edges VALUES (1,1,null,1), -- root
(1,2,1,1),(1,3,2,1),(1,4,2,8),(1,5,1,2),(1,6,5,1),(1,4,5,12),
(1,7,1,8),(1,6,7,.5),(1,8,7,4),(1,9,1,4),(1,10,9,1),(1,4,9,1),
(11,11,null,1), -- root for kit
(11,2,11,1),(11,3,2,1),(11,4,2,8),(11,5,11,2),(11,6,5,1),(11,4,5,12),(11,7,11,8),
(11,6,7,.5),(11,8,7,4),(11,9,11,4),(11,10,9,1),(11,4,9,11),(11,12,11,1);

Here is an adapted breadth-first edge list Bill of Materials for a product identified by a rootID:

• Initialise a level-tracking variable to zero.
• Seed a temp reporting table with the rootID of the desired product.
• While rows are being retrieved, increment the level tracking variable and add rows to the temp table whose

parentnodeIDs are nodes at the current level.
• Percolate costs up the graph from child to parent
• Print the BOM ordered by path to each item, indented proportionally to graph level.

Listing 36: Simpler parts explosion
DROP PROCEDURE IF EXISTS ww_bom;
DELIMITER go
CREATE PROCEDURE ww_bom(root INT)
BEGIN
 DECLARE lev INT DEFAULT 0;
 DECLARE totalcost DECIMAL(10,2);
 DROP TABLE IF EXISTS temp;
 CREATE TABLE temp -- initialise temp table with root node
 SELECT
 e.nodeID AS nodeID,

Graphs in MySQL Page 527

 n.description AS Item,
 e.parentnodeID,
 e.qty,
 n.cost AS nodecost,
 e.qty * n.cost AS cost,
 0 as level, -- tree level
 CONCAT(e.nodeID,'') AS path -- path to this node as a string
 FROM ww_nodes n
 JOIN ww_edges e USING(nodeID) -- root node
 WHERE e.nodeID = root AND e.parentnodeID IS NULL;
 WHILE FOUND_ROWS() > 0 DO
 BEGIN
 SET lev = lev+1; -- increment level
 INSERT INTO temp -- add children of this level
 SELECT
 e.nodeID,
 n.description AS Item,
 e.parentnodeID,
 e.qty,
 n.cost AS nodecost,
 e.qty * n.cost AS cost,
 lev,
 CONCAT(t.path,',',e.nodeID)
 FROM ww_nodes n
 JOIN ww_edges e USING(nodeID)
 JOIN temp t ON e.parentnodeID = t.nodeID
 WHERE e.rootID = root AND t.level = lev-1;
 END;
 END WHILE;
 WHILE lev > 0 DO -- percolate costs up the graph
 BEGIN
 SET lev = lev - 1;
 DROP TABLE IF EXISTS tempcost;
 CREATE TABLE tempcost -- compute child cost
 SELECT p.nodeID, SUM(c.nodecost*c.qty) AS childcost
 FROM temp p
 JOIN temp c ON p.nodeid=c.parentnodeid
 WHERE c.level=lev

Graphs in MySQL Page 528

 GROUP by p.nodeid;
 UPDATE temp JOIN tempcost USING(nodeID) -- update parent item cost
 SET nodecost = nodecost + tempcost.childcost;
 UPDATE temp SET cost = qty * nodecost -- update parent cost
 WHERE level=lev-1;
 END;
 END WHILE;
 SELECT -- list BoM
 CONCAT(SPACE(level*2),Item) AS Item,
 ROUND(nodecost,2) AS 'Unit Cost',
 ROUND(Qty,0) AS Qty,ROUND(cost,2) AS Cost FROM temp
 ORDER by path;
END;
go
DELIMITER ;
CALL ww_bom(1);
+-------------------+-----------+------+--------+
| Item | Unit Cost | Qty | Cost |
+-------------------+-----------+------+--------+
finished bookcase	206.60	1.0	206.60
backboard2x1	9.80	1.0	9.80
laminate2x1	8.00	1.0	8.00
screw	0.10	8.0	0.80
side	25.20	2.0	50.40
screw	0.10	12.0	1.20
plank	20.00	1.0	20.00
shelf	16.00	8.0	128.00
plank	20.00	0.5	10.00
shelf bracket	0.50	4.0	2.00
foot	2.10	4.0	8.40
cube4cmx4cm	1.00	1.0	1.00
screw	0.10	1.0	0.10
+-------------------+-----------+------+--------+

Graphs in MySQL Page 529

Summary

Stored routines and Views make it possible to implement edge list graph models, nested sets graph models, and breadth-
first and depth-first graph search algorithms since MySQL 5. Common Table Expressions in MariaDB since version 10.2.2
and MySQL since version 8.0.1 greatly improve edge list query performance.

Further Reading
Bichot G, “MySQL 8.0.1: [Recursive] Common Table Expressions in MySQL (CTEs), Part Four – depth-first or breadth-first traversal, transitive
closure, cycle avoidance”, mysqlserverteam.com/mysql-8-0-1-recursive-common-table-expressions-in-mysql-ctes-part-four-depth-first-or-
breadth-first-traversal-transitive-closure-cycle-avoidance/.

Celko J, "Trees and Hierarchies in SQL For Smarties", Morgan Kaufman, San Francisco, 2004.

Codersource.net, "Branch and Bound Algorithm in C#",
http://www.codersource.net/csharp_branch_and_bound_algorithm_implementation.aspx.

Math Forum, "Euler's Solution: The Degree of a Vertex", http://mathforum.org/isaac/problems/bridges2.html

Muhammad RB, "Trees", http://www.personal.kent.edu/~rmuhamma/GraphTheory/MyGraphTheory/trees.htm.

Mullins C, "The Future of SQL", http://www.craigsmullins.com/idug_sql.htm.

Murphy K, "A Brief Introduction to Graphical Models and Bayesian Networks", http://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html

Rodrigue J-P, "Graph Theory: Definition and Properties", http://people.hofstra.edu/geotrans/eng/ch2en/meth2en/ch2m1en.html.

Santry P, "Recursive SQL User Defined Functions", http://www.wwwcoder.com/main/parentid/191/site/1857/68/default.aspx.

Shasha D, Wang JTL, and Giugno R, "Algorithmics and applications of tree and graph searching", In Symposium on Principles of Database
Systems, 2002, p 39--52.

Stephens S, "Solving directed graph problems with SQL, Part I", http://builder.com.com/5100-6388_14-5245017.html.

Stephens, S, "Solving directed graph problems with SQL, Part II", http://builder.com.com/5100-6388_14-5253701.html.

Steinbach T, "Migrating Recursive SQL from Oracle to DB2 UDB", http://www-
106.ibm.com/developerworks/db2/library/techarticle/0307steinbach/0307steinbach.html.

Tropashko V, "Nested Intervals Tree Encoding in SQL, http://www.sigmod.org/sigmod/record/issues/0506/p47-article-tropashko.pdf

Van Tulder G, "Storing Hierarchical Data in a Database", http://www.sitepoint.com/print/hierarchical-data-database.

Venagalla S, "Expanding Recursive Opportunities with SQL UDFs in DB2 v7.2", http://www-
106.ibm.com/developerworks/db2/library/techarticle/0203venigalla/0203venigalla.html.

Wikipedia, "Graph Theory", http://en.wikipedia.org/wiki/Graph_theory.

http://mysqlserverteam.com/mysql-8-0-1-recursive-common-table-expressions-in-mysql-ctes-part-four-depth-first-or-breadth-first-traversal-transitive-closure-cycle-avoidance/
http://mysqlserverteam.com/mysql-8-0-1-recursive-common-table-expressions-in-mysql-ctes-part-four-depth-first-or-breadth-first-traversal-transitive-closure-cycle-avoidance/
http://www.codersource.net/csharp_branch_and_bound_algorithm_implementation.aspx
http://mathforum.org/isaac/problems/bridges2.html
http://www.personal.kent.edu/~rmuhamma/GraphTheory/MyGraphTheory/trees.htm
http://www.craigsmullins.com/idug_sql.htm
http://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html
http://people.hofstra.edu/geotrans/eng/ch2en/meth2en/ch2m1en.html
http://www.wwwcoder.com/main/parentid/191/site/1857/68/default.aspx
http://builder.com.com/5100-6388_14-5245017.html
http://builder.com.com/5100-6388_14-5253701.html
http://www-106.ibm.com/developerworks/db2/library/techarticle/0307steinbach/0307steinbach.html
http://www-106.ibm.com/developerworks/db2/library/techarticle/0307steinbach/0307steinbach.html
http://www.sigmod.org/sigmod/record/issues/0506/p47-article-tropashko.pdf
http://www.sitepoint.com/print/hierarchical-data-database
http://www-106.ibm.com/developerworks/db2/library/techarticle/0203venigalla/0203venigalla.html
http://www-106.ibm.com/developerworks/db2/library/techarticle/0203venigalla/0203venigalla.html
http://en.wikipedia.org/wiki/Graph_theory

Graphs in MySQL Page 530

Wikipedia, “Tree traversal”, http://en.wikipedia.org/wiki/Tree_traversal.

Willets K, "SQL Graph Algorithms", http://willets.org/sqlgraphs.html.

TOC Previous Next Last updated 24 Nov 2018

http://en.wikipedia.org/wiki/Tree_traversal
http://willets.org/sqlgraphs.html

	Trees and Other Hierarchies in MySQL
	Graph characteristics and models
	Models for computing graphs
	Graphs and SQL

	The edge list
	Edge list model of a tree
	Walking an edge list tree or subtree
	Enumerating paths in an edge list
	Automate tree drawing!

	Nested sets model of a tree
	Build a nested sets representation from an edge list
	| nodeID | Name | Tree Level | Left | Right
	+--------+----------------------+------------+------+-------
	| 1 | Richard Shakespeare | 1 | 1 | 46
	| 2 | Henry Shakespeare | 2 | 2 | 43
	| 3 | John Shakespeare | 2 | 44 | 45
	| 4 | Joan Shakespeare | 3 | 3 | 4
	| 5 | Margaret Shakespeare | 3 | 5 | 6
	| 6 | William Shakespeare | 3 | 7 | 24
	| 7 | Gilbert Shakespeare | 3 | 25 | 26
	| 8 | Joan Shakespeare | 3 | 27 | 36
	| 9 | Anne Shakespeare | 3 | 37 | 38
	| 10 | Richard Shakespeare | 3 | 39 | 40
	| 11 | Edmond Shakespeare | 3 | 41 | 42
	| 12 | Susana Shakespeare | 4 | 8 | 13
	| 13 | Hamnet Shakespeare | 4 | 14 | 15
	| 14 | Judith Shakespeare | 4 | 16 | 23
	| 15 | William Hart | 4 | 28 | 29
	| 16 | Mary Hart | 4 | 30 | 31
	| 17 | Thomas Hart | 4 | 32 | 33
	| 18 | Michael Hart | 4 | 34 | 35
	| 19 | Elizabeth Hall | 5 | 9 | 12
	| 20 | Shakespeare Quiney | 5 | 17 | 18
	| 21 | Richard Quiney | 5 | 19 | 20
	| 22 | Thomas Quiney | 5 | 21 | 22
	| 23 | John Bernard | 6 | 10 | 11
	+--------+----------------------+------------+------+-------
	Finding a node's parent and children
	Other queries
	Displaying the tree
	Node insertions, updates and deletions
	Nested set model summary

	Edge list model of a non-tree graph
	Airports (nodes)
	Flights (edges)
	Routes (paths)
	Next allowed routes
	Replace longer routes with shorter ones
	Route queries

	Parts explosions
	Shorter and sweeter

	Summary
	Further Reading

